1145-13-2214 Erin Bela* (bela@juniata.edu). Numerical Maculification in Arbitrary Codimension. An ideal $J \subset k[x_0, \dots, x_n]$ is said to be Numerically ACM (NACM) if R/J has the Hilbert function of some codimension c ACM subscheme of \mathbb{P}^n . In this talk, L describe an algorithm which takes an arbitrary ideal and produces, via a finite

c ACM subscheme of \mathbb{P}^n . In this talk, I describe an algorithm which takes an arbitrary ideal and produces, via a finite sequence of basic double links, an ideal which is NACM. An immediate consequence of this result is that every even liaison class of codimension c subschemes of \mathbb{P}^n contains elements which are NACM. This was first proved for the codimension two case by Migliore and Nagel, and I demonstrate that these results can be extended to higher codimension.

Let \mathcal{L} denote the even liaison class of three skew lines in \mathbb{P}^4 , and let \mathcal{L}_S denote the even liaison class of three skew lines on a smooth hypersurface $S \subset P^4$ of degree $d \geq 2$. It is possible to give a complete description of the sequences of basic double links which (in S) produce curves which are NACM. I conclude by using this to show that the subset of \mathcal{L}_S consisting of NACM subschemes, denoted by \mathcal{M}_S , fails to have the Lazarsfeld-Rao property. (Received September 25, 2018)