1145-11-797 Marc Chamberland* (chamberl@grinnell.edu), 1116 8th Ave., Grinnell, IA 50112, and Eugene Herman (eaherman@gmail.com). Factoring $m^{2}+1$. Preliminary report.
Dirichlet's Theorem on Arithmetic Progressions, an important result in prime number theory, states that any linear sequence $\{a n+b: n$ a positive integer $\}$ with $\operatorname{gcd}(a, b)=1$ contains infinitely many primes. However, very little is known about nonlinear polynomial sequences. In this talk, we look at how $m^{2}+1$ factors when m is chosen to be an appropriate polynomial. This includes the use of continuants, a tool usually seen in conjunction with continued fractions, and Keller maps, polynomial maps associated with the famous Keller Jacobian Conjecture. (Received September 14, 2018)

