1145-11-63 Chad Awtrey* (cawtrey@elon.edu). Cyclic Eisenstein polynomials of p-power degree. Let p be an odd prime number and \mathbf{Q}_p the field of p-adic numbers. For a positive integer n, local class field theory shows that there are precisely p^n nonisomorphic totally ramified Galois extensions of \mathbf{Q}_p of degree p^n . Moreover, each extension has a cyclic Galois group. It is therefore natural to ask for polynomials which define each extension. When n = 1, such polynomials are known from the the work of Amano (1971). In this talk, we give analogous results for n = 2 and n = 3. (Received July 18, 2018)