1145-11-459 Eva G Goedhart* (goedhart@lvc.edu) and Helen G Grundman. Using Continued Fractions to Solve a Family of Diophantine Equations.
For positive integers a, b, c, k with $k \geq 7$, I will show how the family of Diophantine equations $\left(a^{2} c X^{k}-1\right)\left(b^{2} c Y^{k}-1\right)=$ $\left(a b c Z^{k}-1\right)^{2}$ has no integer solutions $x, y, z>1$ with $a^{2} x^{k} \neq b^{2} y^{k}$ by using the simple continued fraction expansion of possible solutions to contradict known results. While this will be my focus for this presentation, the proof also uses a Diophantine approximation theorem. (Received September 06, 2018)

