1145-11-2594 Eric M Jovinelly* (ejovinel@nd.edu). Primes and Perfect Powers in the Catalan Triangle. The Catalan triangle is an infinite lower-triangular matrix that generalizes the Catalan numbers. The entries of the Catalan triangle, denoted by $c_{n, k}$, count the number of shortest lattice paths from $(0,0)$ to (n, k) that do not go above the main diagonal. This talk concerns the occurrence of primes and perfect powers in the Catalan triangle. We prove that no prime powers except $2,5,9$, and 27 appear in the Catalan triangle when $k \geq 2$. We further prove that $c_{n, k}$ are not perfect semiprime powers when $k \geq 3$. Finally, we prove that aside from perfect squares when $k=2$, there are at most finitely many perfect powers among $c_{n, k}$ when $k \geq 2$. Part of the last result depends on the $a b c$ conjecture. (Received September 25, 2018)

