1145-11-1532 Michael J Seaman* (mseaman@caltech.edu), 1200 E California Blvd, Pasadena, CA 91125. A Formula for the Number of Monic Degree m Polynomials in $\mathbb{F}_{q}[x]$ with Discriminant d.
We show a formula for the distribution of discriminants of monic polynomials over a finite field. For an odd prime power q, integer $m \geq 2$, and $d \in \mathbb{F}_{q}$, let $\left|V_{d}^{m}\left(\mathbb{F}_{q}\right)\right|$ be the number of monic polynomials in $\mathbb{F}_{q}[x]$ of degree m with discriminant d. We express $\left|V_{d}^{m}\left(\mathbb{F}_{q}\right)\right|$ as a discrete Fourier transform of Gauss sums, computable in polynomial time.

For $d \neq 0$, we show

$$
\left|V_{d}^{m}\left(\mathbb{F}_{q}\right)\right|=\chi(d) \sum_{c=1}^{q-1} \frac{G_{\mathbb{F}_{q}}(c)^{m} \frac{q B_{m-1}(c)-B_{m}(c)}{q} \tau_{q}(-1)^{\frac{c m(m-1)}{2}} \tau_{q}(d)^{c}}{G_{\mathbb{F}_{q}}(c m)}
$$

where τ_{q} is a multiplicative character of order $q-1, \psi$ a nontrivial additive character, $G_{\mathbb{F}_{q}}(c)$ is the Gauss sum $G_{\mathbb{F}_{q}}\left(\tau_{q}^{c}, \psi\right)$, χ is the quadratic character, and

$$
B_{k}(c)= \begin{cases}q^{\frac{k \operatorname{gcd}(, q-1)}{q-1}}, & \text { if }(q-1) \mid c k \\ 0, & \text { otherwise }\end{cases}
$$

For the discriminant, we compute the local L-functions, explicitly verify the Weil Conjectures, express the global L function in terms of Hecke-characters, and deduce classical and new discriminant distribution results. (Received September 23,2018)

