1145-05-983 Lauren M. Nelsen* (lauren.nelsen@du.edu) and Paul Horn. Rainbow spanning trees in general graphs.
A rainbow spanning tree in an edge-colored graph is a spanning tree in which each edge is a different color. Carraher, Hartke, and Horn showed that for n and C large enough, if G is an edge-colored copy of K_{n} in which each color class has size at most $n / 2$, then G has at least $\lfloor n /(C \log n)\rfloor$ edge-disjoint rainbow spanning trees. Here we strengthen this result by showing that if G is any edge-colored graph with n vertices in which each color appears on at most $\delta \cdot \lambda_{1} / 2$ edges, where $\delta \geq C \log n$ for n and C sufficiently large and λ_{1} is the second-smallest eigenvalue of the normalized Laplacian matrix of G, then G contains at least $\left\lfloor\frac{\delta \cdot \lambda_{1}}{C \log n}\right\rfloor$ edge-disjoint rainbow spanning trees. (Received September 17, 2018)

