1145-05-695 Ashwin Sah* (asah@mit.edu). Improving the $\frac{1}{3}-\frac{2}{3}$ Conjecture for Width Two Posets.
Extending results of Linial (1984) and Aigner (1985), we prove a uniform lower bound on the balance constant of a poset P of width 2. This constant is defined as $\delta(P)=\max _{(x, y) \in P^{2}} \min \{\mathbb{P}(x \prec y), \mathbb{P}(y \prec x)\}$, where $\mathbb{P}(x \prec y)$ is the probability x is less than y in a uniformly random linear extension of P. In particular, we show that if P is a width 2 poset that cannot be formed from the singleton poset and the three element poset with one relation using the operation of direct sum, then

$$
\delta(P) \geq \frac{-3+5 \sqrt{17}}{52} \approx 0.33876 \ldots
$$

This partially answers a question of Brightwell (1999); a full resolution would require a proof of the $\frac{1}{3}-\frac{2}{3}$ Conjecture that if P is not totally ordered then $\delta(P) \geq \frac{1}{3}$.

Furthermore, we construct a sequence of posets T_{n} of width 2 with $\delta\left(T_{n}\right) \rightarrow \beta \approx 0.348843 \ldots$, giving an improvement over a construction of Chen (2017) and over the finite posets found by Peczarski (2017). Numerical work on small posets by Peczarski suggests the constant β may be optimal. (Received September 13, 2018)

