1145-05-612 Nicholas A. Loehr*, 225 Stanger Street, 460 McBryde Hall, Blacksburg, VA 24060, and T. S. Michael. The combinatorics of evenly spaced binomial coefficients. Preliminary report. A curious identity for binomial coefficients states that $\sum_{k}\binom{n}{k m}=\frac{1}{m} \sum_{j=0}^{m-1}\left(1+e^{2 \pi i j / m}\right)^{n}$. There are similar formulas for the sum of $\binom{n}{a}$ over all a 's with a given remainder mod m. This talk undertakes a combinatorial exploration of these formulas emphasizing bijective proofs. Our goal is to find a combinatorial explanation of why these sums are "almost" $2^{n} / m$. We give a bijective proof that the minimum of the sums $\sum_{k}\binom{n}{k m+r}$ equals $\left(2^{n}-\ell(n, m)\right) / m$, where the "error term" $\ell(n, m)$ has an explicit combinatorial interpretation involving words satisfying certain parenthesis-matching conditions. Among other consequences, this leads to a novel combinatorial model for alternate Lucas numbers. (Received September 11, 2018)

