1145-05-612 Nicholas A. Loehr*, 225 Stanger Street, 460 McBryde Hall, Blacksburg, VA 24060, and T. S. Michael. The combinatorics of evenly spaced binomial coefficients. Preliminary report. A curious identity for binomial coefficients states that ∑_k (ⁿ_{km}) = ¹/_m ∑_{j=0}^{m-1}(1 + e^{2πij/m})ⁿ. There are similar formulas for the sum of (ⁿ_a) over all a's with a given remainder mod m. This talk undertakes a combinatorial exploration of these formulas emphasizing bijective proofs. Our goal is to find a combinatorial explanation of why these sums are "almost" 2ⁿ/m. We give a bijective proof that the minimum of the sums ∑_k (ⁿ_{km+r}) equals (2ⁿ − ℓ(n,m))/m, where the "error term" ℓ(n,m) has an explicit combinatorial interpretation involving words satisfying certain parenthesis-matching conditions. Among other consequences, this leads to a novel combinatorial model for alternate Lucas numbers. (Received September 11, 2018)