1145-05-433 Ryan R Martin, Abhishek Methuku, Andrew Uzzell and Shanise Walker*
(walkersg@uwec.edu). The size of a family forbidding the $Y_{k, 2}$ poset and its dual.
The poset $Y_{k, 2}$ consists of $k+2$ distinct elements $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}$, such that $x_{1} \leq x_{2} \leq \cdots \leq x_{k} \leq y_{1}, y_{2}$. The poset $Y_{k, 2}^{\prime}$ is the dual poset of $Y_{k, 2}$. The sum of the k largest binomial coefficients of order n is denoted by $\Sigma(n, k)$. Let $\mathrm{La}^{\sharp}\left(n,\left\{Y_{k, 2}, Y_{k, 2}^{\prime}\right\}\right)$ be the size of the largest family $\mathcal{F} \subset 2^{[n]}$ that contains neither $Y_{k, 2}$ nor $Y_{k, 2}^{\prime}$ as an induced subposet. Methuku and Tompkins proved that $\operatorname{La}^{\sharp}\left(n,\left\{Y_{2,2}, Y_{2,2}^{\prime}\right\}\right)=\Sigma(n, 2)$ for $n \geq 3$ and conjectured the generalization that if $k \geq 2$ is an integer and $n \geq k+1$, then $\mathrm{La}^{\sharp}\left(n,\left\{Y_{k, 2}, Y_{k, 2}^{\prime}\right\}\right)=\Sigma(n, k)$. On the other hand, it is known that $\mathrm{La}^{\sharp}\left(n, Y_{k, 2}\right)$ and $\mathrm{La}^{\sharp}\left(n, Y_{k, 2}^{\prime}\right)$ are both strictly greater than $\Sigma(n, k)$. In this talk, we introduce a simple approach, motivated by discharging, to prove this conjecture. (Received September 06, 2018)

