1145-05-358 Colin Defant* (cdefant@princeton.edu), Michael Engen and Jordan A Miller. Lassalle's Sequence Counts Uniquely Sorted Permutations.
Consider the sequence $\left(A_{m}\right)_{m \geq 1}$ satisfying $A_{1}=1$ and

$$
A_{m}=(-1)^{m-1} C_{m}+\sum_{j=1}^{m-1}(-1)^{j-1}\binom{2 m-1}{2 m-2 j-1} A_{m-j} C_{j}
$$

for $m \geq 2$, where C_{n} is the $n^{\text {th }}$ Catalan number. Lassalle gave an algebraic proof that the terms in this sequence are positive and increasing, settling a conjecture of Zeilberger. We show that A_{k+1} is the number of permutations $\pi \in S_{2 k+1}$ satisfying $\left|s^{-1}(\pi)\right|=1$, where s is West's stack-sorting map. This result follows from a more general bijection between certain weighted set partitions and relatively new combinatorial objects called valid hook configurations. These objects were introduced in order to provide a method, which we will describe, for computing $\left|s^{-1}(\pi)\right|$ for any permutation π. We discuss connections between valid hook configurations and cumulants arising in free probability theory. Finally, let $A_{k+1}(\ell)$ denote the number of permutations $\pi=\pi_{1} \pi_{2} \cdots \pi_{2 k+1} \in S_{2 k+1}$ satisfying $\left|s^{-1}(\pi)\right|=1$ and $\pi_{1}=\ell$. We show that the sequence $A_{k+1}(1), A_{k+1}(2), \ldots, A_{k+1}(2 k+1)$ is symmetric, and we conjecture that it is log-concave. (Received September 03, 2018)

