1145-05-325 Sally Cockburn* (scockbur@hamilton.edu), 198 College Hill Road, Clinton, NY 13323. Homomorphic Preimages of Graphs.

A graph G is a homomorphic preimage of another graph \overline{G} is quivalently G is H-colorable, if there exists a graph homomorphism $f: G \to H$. A geometric graph \overline{G} is a simple graph G together with a straight line drawing of G in the plane with the vertices in general position. A geometric homomorphism (resp. isomorphism) $\overline{G} \to \overline{H}$ is a graph homomorphism (resp. isomorphism) that preserves edge crossings (resp. and non-crossings). The homomorphism poset \mathcal{G} of a graph G is the set of isomorphism classes of geometric realizations of G partially ordered by the existence of injective geometric homomorphisms. A geometric graph \overline{G} is \mathcal{H} -colorable if $\overline{G} \to \overline{H}$ for some $\overline{H} \in \mathcal{H}$. In this talk, I will provide necessary and sufficient conditions for \overline{G} to be \mathcal{P}_n -colorable for $n \geq 2$. (Received August 31, 2018)