1145-05-2411 Berit Nilsen Givens* (bngivens@cpp.edu). A sequence of integrals of Fibonacci polynomials. Preliminary report.
The Fibonacci polynomials, by analogy with Fibonacci numbers, are defined recursively: $F_{1}(x)=1, F_{2}(x)=x$, and $F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x)$. Unsurprisingly, the Fibonacci polynomials $F_{n}(x)$ have many interesting properties. Here we consider the sequence of numbers $e(n)=\int_{0}^{\infty} F_{n}(x) e^{-x} d x$, whose first few terms are $1,1,3,8,31,147$. We give an overview of some basic facts about the sequence $e(n)$, including both recursive and nonrecursive formulas. Finally, we investigate the sequences obtained by considering $e(n)$ modulo a prime p and compute the p-adic valuation of $e(n)$ for a few example values of p. (Received September 25, 2018)

