1145-05-1953 Anastasia Chavez* (anachavez@math.ucdavis.edu), Jesús A. De Loera, Ana Paulina Figueroa, Yuanbo Li, Edgar Possani and Lingyun Ye. Polyhedral cones generated by cycles of a graph.
The cycles of a graph G generate two combinatorial objects:

1. a polyhedral cone \mathcal{C}_{G} we call the cone of cycles of G, where cycles are the extreme rays of \mathcal{C}_{G}, and
2. an integral semigroup $S g(G)$ we call the semigroup of cycles of G, where cycles of G are the generators of $S g(G)$.

Studying these objects is motivated by the simplicity that a cone and semigroup perspective can offer for several open questions in graph theory. For example, the Double Cover conjecture asserts any graph G has a cycle covering such that every edge of G is contained in exactly two cycles. In terms of semigroups, this simplifies to the equivalent statement that $(2, \ldots, 2) \in S g(G)$ for all G.

In this talk we describe some properties and algorithms of the cone and semigroup for an undirected graph. (Received September 24, 2018)

