1145-05-1735 Huy Tuan Pham* (huypham@stanford.edu). Tower-type bounds for Roth's theorem with popular differences.
A famous theorem of Roth states that for any $\alpha>0$ and n sufficiently large in terms of α, any subset of $[n]$ with density α contains a 3 -term arithmetic progression. Green developed an arithmetic analogue of Szemerédi's regularity lemma to prove that not only is there one arithmetic progression, but in fact there is some integer $d>0$ for which the density of 3 -term arithmetic progressions with common difference d is at least roughly what is expected in a random set with density α. In particular, for any $\in>0$, there is some n_{\in} such that for all $n>n_{\epsilon}$ and any subset A of $[n]$ with density α, there is some integer $d>0$ for which the number of 3 -term arithmetic progressions in A with common difference d is at least $\left(\alpha^{3}-\epsilon\right) n$. We prove that n_{ϵ} grows as an exponential tower of 2 's of height on the order of $\log \left(\frac{1}{\epsilon}\right)$. We show that the same is true if we replace the interval [n] by any abelian group of odd order n. These results are the first applications of regularity lemmas for which the tower-type bounds are shown to be necessary.

The results are joint work with Jacob Fox and Yufei Zhao. (Received September 24, 2018)

