The traditional ballot box problem is to determine the probability that candidate A is never behind candidate B during the counting of n ballots. We consider a ballot box problem having probabilities of voting for A, B or abstaining corresponding to one-step transition probabilities of certain types of birth-death Markov chains. Under our assumptions, a formula for the probability that candidate A is never behind candidate B during the counting of n ballots is determined in terms of known eigenvalues of a class of tridiagonal transition matrices P associated with the birth-death chain.

Using explicit formulas for the nth power of P , we discuss the fluctuation probability of certain lattice paths that are restricted to lie within a finite-width strip. We also consider the probability of staying in strip for certain types of circular birth-death chains. If time allows, we explore known eigenvalues of more general Markov chains. (Received September 25, 2018)

