1145-05-1202 Danielle Wang* (diwang@mit.edu). On roots of Wiener polynomials of trees.

The Wiener polynomial of a connected graph G is the polynomial $W(G; x) = \sum_{i=1}^{D(G)} d_i(G)x^i$ where D(G) is the diameter of G, and $d_i(G)$ is the number of pairs of vertices at distance *i* from each other. We examine the roots of Wiener polynomials of trees. We prove that the collection of real Wiener roots of trees is dense in $(-\infty, 0]$, and the collection of complex Wiener roots of trees is dense in \mathbb{C} . We also prove that the maximum modulus among all Wiener roots of trees of order $n \ge 31$ is between 2n - 15 and 2n - 16, and we determine the unique tree that achieves the maximum for $n \ge 31$. Finally, we find trees of arbitrarily large diameter whose Wiener roots are all real. (Received September 20, 2018)