1145-05-1202 Danielle Wang* (diwang@mit. edu). On roots of Wiener polynomials of trees.
The Wiener polynomial of a connected graph G is the polynomial $W(G ; x)=\sum_{i=1}^{D(G)} d_{i}(G) x^{i}$ where $D(G)$ is the diameter of G, and $d_{i}(G)$ is the number of pairs of vertices at distance i from each other. We examine the roots of Wiener polynomials of trees. We prove that the collection of real Wiener roots of trees is dense in $(-\infty, 0]$, and the collection of complex Wiener roots of trees is dense in \mathbb{C}. We also prove that the maximum modulus among all Wiener roots of trees of order $n \geq 31$ is between $2 n-15$ and $2 n-16$, and we determine the unique tree that achieves the maximum for $n \geq 31$. Finally, we find trees of arbitrarily large diameter whose Wiener roots are all real. (Received September 20, 2018)

