1145-05-1198 Marshall M. Cohen* (marshall.cohen@morgan.edu). Elements of finite order in the Riordan group.

We consider elements (g(x), F(x)) in the Riordan group \mathcal{R} over a field \mathbb{F} of characteristic 0, where $g(x) = g_0 + g_1 x + g_2 x^2 + \cdots$, $g_0 \neq 0$, and $F(x) = \omega x + f_2 x^2 + \cdots$, $\omega \neq 0$. We answer some foundational questions about elements of finite order in \mathcal{R} .

Theorem 1 states that (g(x), F(x)) has finite order n in \mathcal{R} if and only if (a) $n = \ell.c.m(\operatorname{ord}(g_0), \operatorname{ord}(\omega))$ in $\mathbb{F} \setminus \{0\}$ and (b) F(x) has finite compositional order and (c) There exists $h(x) = h_0 + h_1 x + \cdots$, $h_0 \neq 0$ such that $g(x) = g_0 \cdot (h(x)/h(F(x)))$.

Theorem 2 classifies elements of finite order in \mathcal{R} up to conjugation.

Theorem 3 determines the set of eigenvectors of a given element (g(x), F(x)) of finite order in \mathcal{R} . Finally we note that knowledge of the eigenvectors leads to interesting combinatorial formulas. (Received September 19, 2018)