1145-05-1198
Marshall M. Cohen* (marshall.cohen@morgan.edu). Elements of finite order in the Riordan group.
We consider elements $(g(x), F(x))$ in the Riordan group \mathcal{R} over a field \mathbb{F} of characteristic 0 , where $g(x)=g_{0}+g_{1} x+$ $g_{2} x^{2}+\cdots, g_{0} \neq 0$, and $F(x)=\omega x+f_{2} x^{2}+\cdots, \omega \neq 0$. We answer some foundational questions about elements of finite order in \mathcal{R}.

Theorem 1 states that $(g(x), F(x))$ has finite order n in \mathcal{R} if and only if (a) $n=\ell . c . m\left(\operatorname{ord}\left(g_{0}\right), \operatorname{ord}(\omega)\right)$ in $\mathbb{F} \backslash\{0\}$ and (b) $F(x)$ has finite compositional order and (c) There exists $h(x)=h_{0}+h_{1} x+\cdots, h_{0} \neq 0$ such that $g(x)=g_{0} \cdot(h(x) /$ $h(F(x)))$.

Theorem 2 classifies elements of finite order in \mathcal{R} up to conjugation.
Theorem 3 determines the set of eigenvectors of a given element $(g(x), F(x))$ of finite order in \mathcal{R}. Finally we note that knowledge of the eigenvectors leads to interesting combinatorial formulas. (Received September 19, 2018)

