1145-05-115 Amanda Welch* (welcha1@vt.edu). Double Affine Bruhat Order. Preliminary report.

Given a finite Weyl group W_{fin} with root system Φ_{fin} , one can create the affine Weyl group W_{aff} by taking the semidirect product of the translation group associated to Q^{\vee} , the coroot lattice for Φ_{fin} , with W_{fin} . The double affine Weyl semigroup W can be created by using a similar semidirect product where one replaces W_{fin} with W_{aff} and Q^{\vee} with the Tits cone of W_{aff} . We classify cocovers and covers of a given element of W with respect to the Bruhat order, specifically when W is associated to a finite root system that is irreducible and simply laced. We show two approaches: one adapting the work of Lam and Shimozono, and its strengthening by Milićević, where cocovers are characterized in the affine case using the quantum Bruhat graph of W_{fin} , and another, which takes a more geometrical approach by using the length difference set defined by Muthiah and Orr. (Received September 21, 2018)