1145-03-1434 Mojtaba Moniri* (mojtaba.moniri@normandale.edu). Addition with or without multiplication: algorithms, maximality, and near-linearity.
We first mention two algorithms for a certain sequence of nonnegative integers, one which calculates in $(\mathbb{Z},+)$ in conjunction with the counting operator \# and the exponential substitution, and applies to any positive integer input. The other algorithm calculates in $(\mathbb{Z},+, \cdot)$, and is more efficient when the input is a power of 2.
Next, let F be an ordered field, D a maximal discrete subring of F, and G a maximal discrete additive subgroup of F. We point out that although there are examples where F has elements of infinite distance to D, it can never realize any gaps of G. For countable F, the subgroup G can be constructed Δ_{2}^{0} relative to F.
Finally we consider some nonstandard models M of weak arithmetic which have \mathbb{Z} as an additive direct summand. We present functions $f, g: M \rightarrow M$ whose value at a sum minus sum of values is always 0 or 1 yet for some $x, y, u, v \in M^{\geq 1}$, $f(x y)<x f(y)$ and $g(u v)>u g(v)+u-1$. (Received September 21, 2018)

