Tyler A. Brown* (tab5357@iastate.edu), Department of Mathematics, Iowa State University, Ames, IA 50011-2104, and Timothy H. McNicholl (mcnichol@iastate.edu). On the Degrees of Categoricity of Semi-Atomic L^p Spaces.

In 2015, T. McNicholl proved that the purely atomic L^p spaces with finitely many atoms are computably categorical when $p \geq 1$ is computable and that the degree of categoricity of purely atomic L^p spaces with infinitely many atoms is $\mathbf{0}$ ' whenever $p \geq 1$, $p \neq 2$ is a computable real. Thereafter, it was shown by Clanin, McNicholl, and Stull that the purely non-atomic L^p spaces are computably categorical when $p \geq 1$ is a computable real. In this talk we will investigate the semi-atomic L^p spaces. For computable $p \geq 1$, $p \neq 2$ we then illustrate how the interplay between atomic and non-atomic parts of these spaces increases the degree of categoricity by one jump when a semi-atomic L^p space has finitely and infinitely many atoms. (Received September 21, 2018)