1145-03-1046 Julia F. Knight* (knight.1@nd.edu), Karen Lange and Reed Solomon. Roots of polynomials in fields of generalized power series.

Let K be an algebraically closed field of characteristic 0. Newton and Puiseux showed that the field $K\{\{t\}\}$ of Puiseux series is algebraically closed. Maclane showed that for a divisible Abelian group G, the field K((G)) of Hahn series is algebraically closed. Puiseux series have length at most ω . For a given polynomial p(x), Newton's method for finding roots does not look computable. However, guessing at the non-computable bits, we get a uniform effective procedure that, when applied to any K and a non-constant polynomial p(x) over $K\{\{t\}\}$, yields a root. Hahn series have ordinal length. We can show that if p(x) is a polynomial and γ is a limit ordinal greater than the lengths of all coefficients in p(x), then the roots all have length less than $\omega^{\omega^{\gamma}}$. At least for countable ordinals γ , this is sharp. We would like to measure, in terms of the usual hierarchies from computability, the complexity of the process that, for a computable ordinal α , given K, G, and a polynomial p(x) over K((G)), either produces r_{α} of length α that is an initial segment of a root, or else determines a root r of length less than α . (Received September 18, 2018)