1106-41-2344Mohammad A AlQudah* (alqudahm@northwood.edu), 4000 Whiting Dr, Department of
Mathematics, Midland, MI 48640, and James R Angelos. Characterization of Best
Approximation in Generalized Chebyshev Spaces.

Let X be a finite set with the discrete topology and $C(X, \mathbb{R}^k)$ be the space of vector valued continuous functions from X to k-dimensional Euclidean space \mathbb{R}^k ; and let G denote the space

$$G := Span\{u^{j,d} | u^{j,d}(x) = u_{j,d}(x)e_d, j = 1, \dots, n_d, d = 1, \dots, k\} \subseteq C(X, \mathbb{R}^k)$$

with $u_{j,d} \in C(X, \mathbb{R}), e_d$, the standard basis vectors in \mathbb{R}^k , and let n_1, \ldots, n_k be the dimensions of the component spaces comprising G, with $n_1 + \ldots + n_k = n$.

This work is devoted to the study of best approximation of $f \in C(X, \mathbb{R}^k)$ from G in the uniform norm. In addition, we investigate the properties that characterize the best approximation. (Received September 16, 2014)