1106-41-1229 **Mark A Spanier***, mark.spanier@ndsu.edu. *Extremal Signatures and Best* $L^{1}(\mu)$ -Approximations. Preliminary report.

For a given Borel measure μ on \mathbb{R} , let $\mathcal{A}_1(\delta, \mu)$ be the space of entire functions of exponential type at most δ in $L^1(\mathbb{R}, \mu)$. A function $\psi : \mathbb{R} \to \mathbb{C}$ such that $|\psi(x)| = 1$ a.e. is called an extremal signature for μ , if

$$\int_{-\infty}^{\infty} \psi(x) F(x) \, d\mu(x) = 0$$

for all $F \in \mathcal{A}_1(\delta, \mu)$. Such functions are extremely important in the study of best approximations of prescribed exponential type (bandlimited functions) in $L^1(\mu)$ -norm.

For a class of measures of the form $d\mu_E(x) = |E(x)|^{-2} dx$ where E is a Hermite-Biehler function, we determine extremal signatures for μ_E . Using these signatures and general interpolation results, we are able to construct best $L^1(\mu_E)$ approximations to large families of functions. This presentation is based on joint work with Friedrich Littmann. (Received September 11, 2014)