1106-37-942 James P Kelly* (j_kelly@baylor.edu) and Timothy Tennant. Topological Entropy of Set-valued Functions. Preliminary report.

Let (X, d) be a compact metric space, and let f be a set-valued function on X. For each $n \in \mathbb{N}$, define the set of *n*-orbits to be

$$\operatorname{Orb}_n(f) = \{(x_0, \dots, x_n) | x_i \in f(x_{i-1}) \text{ for } 1 \le i \le n\}.$$

Given $n \in \mathbb{N}$ and $\varepsilon > 0$, a set $S \subseteq \operatorname{Orb}_n(f)$ is called an (n, ε) -spanning set if, for every $(x_0, \ldots, x_n) \in \operatorname{Orb}_n(f)$, there exists $(s_0, \ldots, s_n) \in S$ such that $d(s_i, x_i) < \varepsilon$ for all $0 \le i \le n$. Let $r_{n,\varepsilon}$ be the minimum cardinality of an (n, ε) -spanning set for f, and define the topological entropy of f to be

$$h(f) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log r_{n,\varepsilon}.$$

We discuss the relationship between the entropy of f and the entropy of f^m , and we establish sufficient conditions for a set-valued function to have positive or infinite entropy. (Received September 09, 2014)