Samaneh Gholizadeh Hamidi* (s.hamidi_61@yahoo.com), Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, 50603 Kuala Lumpur, Malaysia, and Jay M Jahangiri (jjahangi@kent.edu), Department of Mathematical Sciences, Kent State University, 14111 Claridon, Troy Road, Burton, Ohio 44021-9500, U.S.A., Burton, OH 44021-9500. Faber polynomial coefficients of classes of m-fold symmetric bi-univalent functions. Preliminary report.
Each function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in \mathcal{S} analytic and univalent in the open unit disk $\mathbb{D}:=\{z:|z|<1\}$ generates a sequence of m-fold symmetry functions $g_{m}(z)=\sqrt[m]{f\left(z^{m}\right)}=z+\sum_{n=2}^{\infty} b_{m n-1} z^{m n-1}$ in $\mathcal{S} ; \quad(m=1,2,3, \ldots)$. Conversely, every $g_{m} \in \mathcal{S}$ is the $m^{t h}$ - root transform of some function $f \in \mathcal{S}$. Each $f \in \mathcal{S}$ has an inverse f^{-1} satisfying $f^{-1}(f(z))=z$; $(|z|<1)$ and $f\left(f^{-1}(w)\right)=w ; \quad\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)$. The Koebe function $k(z)=z /(1-z)^{2}$ and its inverse map $K(w)=w+\sum_{n=2}^{\infty}((2 n)!/[n!(n+1)!]) w^{n}$ are prominent members of inverse univalent functions. Very little is known about the classes of m-fold symmetric bi-univalent functions. An analytic function is said to be bi-univalent in \mathbb{D} if both the function and its inverse map are univalent in \mathbb{D}. We use the Faber polynomial expansion to investigate the unpredictable behavior of the early coefficients of classes of m -fold symmetric bi-univalent functions and also give an estimates for the general coefficients of such functions subject to a given gap series condition. (Received August 31, 2014)

