Albert R. Bush* (albertbush@gmail.com) and Ernie Croot. Few Products, Many h-fold

 Sums: Progress on the Multi-fold Sum-Product Problem in the Reals.The well-known sum-product conjecture of Erdős and Szemerédi states that either the sumset $A+A$ or the product set A. A are nearly maximal in size, $\Omega\left(|A|^{2-\epsilon}\right)$. They made a similar conjecture that the h-fold sumset or the h-fold product set is of size $\Omega\left(|A|^{h-\epsilon}\right)$. While resolution of the h-fold conjecture is currently out of reach, weaker forms have seen some success. Chang proved that if A is a set of integers and $|A \cdot A| \leq K|A|$, then the h-fold sumset of A is of size $\Omega_{K}\left(|A|^{h}\right)$. However, if A is a set of reals, the best known bounds have all been much weaker: $O\left(|A|^{\log h}\right)$. We prove the first bound that is stronger than logarithmic in the exponent: $|A|^{\exp (\sqrt{\log h})}$. Our proof incorporates the graph-theoretic technique of dependent random choice, a bound on the Tarry-Escott problem in number theory, and well-known additive combinatorial tools. (Received September 15, 2014)

