1035-51-1121 **R. Daniel Mauldin*** (mauldin@unt.edu), Department of Mathematics, University of North Texas, Box 311430, Denton, TX 76205. The Steinhaus tiling problem for lattices in \mathbb{R}^n . Let L be a lattice in \mathbb{R}^d , $d \ge 2$. We discuss the following problems: (1) Is there a set S which meets each isometric copy of L in exactly one point? (2) Can such a set be Lebesgue measurable? The set S can be regarded as a simultaneous tiling of \mathbb{R}^d . The answer to (1) is yes in case $L = Z^2$ and no in the case of Z^4 . The answer to (2) is no for Z^d , d > 2 and is unknown for d = 2. There are a number of other lattices where the answer is known, but for most lattices the problems remain unsolved. (Received September 18, 2007)