1035-44-20James V Peters* (jpeters@liu.edu), Department of Mathematics, Long Island University,
Brookville, NY 11548. Variation of the Radon Transform.

Given any $\varepsilon > 0$, it is possible to construct a compact set in the plane of measure $< \varepsilon$, containing a line segment of unit length in every direction. Putting $\varepsilon = 1/k$ and taking the intersection over all k yields a Besicovitch-Kakeya set. Examples are well known, as is the fact that this cannot be done for all rotations of k-planes in \mathbb{R}^n for $1 < k \leq n - 1$.

Let E(x) denote the characteristic function of a compact set in \mathbb{R}^n and $\hat{E}(\theta, t)$ its Radon transform. For a Besicovitch-Kakeya set in \mathbb{R}^2 , the variation of \hat{E} is ≥ 2 for every direction θ . We obtain estimates of a sets measure in terms of the variation of the derivative of its Radon transform of order < n/2 - 1. Upper and lower bound bound estimates are obtained for all $n \geq 3$; evidently, the inequality only goes one way for n = 2. The estimates are best possible for n = 2and 3. The analysis is also carried out for absolutely integrable functions with compact support. (Received May 14, 2007)