Thomas J. Osler* (osler@rowan.edu), Math Department, Rowan University, Glassboro, NJ 08028. Vieta like products involving Fibonacci and Lucas numbers.

The beautiful infinite product formula of radicals

$$
\frac{2}{\pi}=\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots
$$

due to Vieta in 1592, is one of the oldest noniterative analytical expressions for $\pi$. It is the purpose of this note to prove the following two Vieta-like products

$$
\frac{\sqrt{5} F_{N}}{2 N \log \phi}=\sqrt{\frac{1}{2}+\frac{L_{N}}{4}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{L_{N}}{4}}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{L_{N}}{4}}}} \cdots
$$

for $N$ even, and

$$
\frac{L_{N}}{2 N \log \phi}=\sqrt{\frac{1}{2}+\frac{\sqrt{5} F_{N}}{4}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{\sqrt{5} F_{N}}{4}}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{\sqrt{5} F_{N}}{4}}} \cdots}
$$

for $N$ odd. Here $N$ is a positive integer, $F_{N}$ and $L_{N}$ are the Fibonacci and Lucas numbers, and $\phi=\frac{1+\sqrt{5}}{2}$ is the golden section. (Received September 12, 2007)

