Pick nonlinear $f, g \in \mathbb{C}[x]$, and arbitrary $x_{0}, y_{0} \in \mathbb{C}$. I will discuss the following result: if the orbits $\left\{x_{0}, f\left(x_{0}\right), f\left(f\left(x_{0}\right)\right), \ldots\right\}$ and $\left\{y_{0}, g\left(y_{0}\right), g\left(g\left(y_{0}\right)\right), \ldots\right\}$ have infinite intersection, then f and g have a common iterate.

The main ingredients in the proof are Siegel's theorem on integral points on curves, an analogue for preperiodic points of Silverman's specialization theorem, Ritt's characterization of polynomials with a common iterate, inequalities involving canonical heights, a result of Bilu-Tichy on diophantine equations with infinitely many solutions, and various new results about polynomial decomposition, of which the most difficult is: if the k-th iterate of f can be written as the composition $u \circ v$ with $u, v \in \mathbb{C}[x]$, then one of the following holds: (1) for some $h \in \mathbb{C}[x]$ we have either $u=f \circ h$ or $v=h \circ f$; (2) $k<\log _{2}(\operatorname{deg} f)$; or (3) for some linear $\ell \in \mathbb{C}[x]$ we have either $f=\ell \circ x^{n} \circ \ell^{-1}$ or $f=\ell \circ \epsilon T_{n} \circ \ell^{-1}$, where $\epsilon \in\{1,-1\}$ and T_{n} is the Chebychev polynomial, defined by $T_{n}(\cos \theta)=\cos n \theta$. (Received July 17, 2007)

