1035-06-1481Alan Shuchat* (ashuchat@wellesley.edu), Dept. of Mathematics, Wellesley College, Wellesley, MA 02481,
Randy Shull, Dept. of Computer Science, Wellesley College, Wellesley, MA 02481,
and Ann Trenk, Dept. of Mathematics, Wellesley College, Wellesley, MA 02481. Fractional Weak
Discrepancy, Interval Orders, and Forbidden Configurations.

The fractional weak discrepancy $wd_F(P)$ of a poset $P = (V, \prec)$ is the minimum nonnegative k for which there exists a function $f: V \to \mathbf{R}$ satisfying (i) if $a \prec b$ then $f(a) + 1 \leq f(b)$ and (ii) if $a \parallel b$ then $|f(a) - f(b)| \leq k$. An $\mathbf{r} + \mathbf{s}$ is a disjoint union of two chains with r and s elements, respectively. Semiorders, which contain no induced $\mathbf{2} + \mathbf{2}$ or $\mathbf{3} + \mathbf{1}$, were characterized by their fractional weak discrepancy in Shuchat, Shull, and Trenk, *ORDER*, 23:51–63, 2006. Here we generalize this result to describe the range of values of $wd_F(P)$ based on whether or not P contains certain induced $\mathbf{r} + \mathbf{s}$ configurations. For example, we find the range of $wd_F(P)$ for interval orders with no induced $\mathbf{n} + \mathbf{1}$. (Received September 20, 2007)