1035-05-804 Robert Brignall, William Griffiths, Rebecca Smith* (rnsmith@brockport.edu), Vincent Vatter, Daniel Warren and Doron Zeilberger. Almost avoiding classes of permutations.
Define a permutation of length n as an arrangement of the integers $1,2, \ldots, n$. A permutation $p=p_{1} p_{2} \ldots p_{n}$ is said to contain a pattern $q=q_{1} q_{2} \ldots q_{k}$ if there is a sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{k}$ and $p_{\alpha_{i}}<p_{\alpha_{j}}$ if and only if $q_{i}<q_{j}$. Otherwise, the permutation p is said to avoid q.

There are several ways to consider "almost-avoidance" in terms of pattern avoidance. Past work has been done on counting permutations that contain a single copy of a given pattern. However, for this talk, when we say that a permutation almost avoids a permutation q, we will mean that one needs to remove at most one entry for the resulting permutation to avoid q entirely. We also extend this notion to pairs of permutations. That is, a permutation almost avoids a pair of permutations if the removal of at most one entry causes the resulting permutation to avoid both of the given patterns q_{1} and q_{2}. (Received September 17, 2007)

