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Introduction and a glimpse of history. It was a great honor to be invited to
give an hour talk at the Centennial Celebration of the American Mathemat-
ical Society. I have been reminded many times both before and after that I
was the one woman speaker among the twenty odd speakers of this confer-
ence. Unlike some of my younger colleagues who gave addresses, I myself
cannot expect to be present at the 150th anniversary celebration, although I
very much hope a world sufficiently similar to ours exists in 2038 for such
a celebration to take place. I also hope that no comments on the place of
women in mathematics are even relevant at the time of this next celebration.

In preparing and writing up my talk, which was introduced by the leg-
endary differential geometer S. S. Chern, I have been very aware that I am
the only speaker representing the exciting developments which have taken
place in global differential geometry in the last fifteen years. The technical -
understanding of elliptic partial differential equations has led to unprece-
dented understanding of the global aspects of diverse basic ideas in geometry
such as minimal surfaces and Riemannian curvature equations. Applications
in topology, algebraic geometry, and applied mathematics are very striking
and important. My talk, however, concentrated on a completely new subject:
the study of curvature or field equations linked not to the geometry of the
manifold but to the extrinsic geometry of objects with the technically obscure
name of principal bundles. Their structure groups appear in particle physics
as the SU(2) is isospin; the SU(3)’s of isospin and strangeness, color, and
charm; the SU(5) of unified field theories; and the E; s of string theory.The
classical equations of the gauge theory of theoretical physicists entered pure
mathematics. In a very few years they have become central to mathemati-
cians’ understanding of objects such as smooth four-manifolds and stable
bundles. This development has been the event of greatest intellectual excite-
ment in my career. I am left with the feeling that the few small contributions
I made in gauge field theory were right in the center of intellectual progress.
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Hence my continued pursuit of a chimera: an understanding of mathematical
ideas as they come from outside mathematics itself. My energies have taken
me only to the mathematical edge of physics.

Before I begin the official write-up of my talk, I would like to take this
opportunity to thank all the people and institutions who have encouraged
and supported my mathematical career thus far. Mention of a special sort
should go to my thesis advisor, Richard Palais, and to my good friend, S.
T. Yau. Finally, my junior colleague, Dan Freed, has been of great help in
preparing this manuscript.

1. The birth of gauge theory. How did gauge theory appear and become
successful in mathematics in the space of a few years? The fundamental
mathematical ingredients were in place. The basics of fibre and vector bun-
dles and their connections were in daily use by geometers. Chern-Weil theory
(and even Chern-Simons invariants) were studied in most graduate courses
in differential geometry. De Rham cohomology and its realization via the
Hodge theory of harmonic forms were standard items in differential topol-
ogy. In hindsight, the Yang-Mills equations were waiting to be discovered.
Yet mathematicians were in themselves unable to create them. Gauge field
theory is an adopted child.

Physicists Yang and Mills wrote down their equations in 1954, referring
explicitly to isotopic spin as the group invariance. Some ingredients of gauge
theory became incorporated gradually into the theory of the electro-weak
interactions in physics over the next twenty years. These are not particularly
recognizable or striking to mathematicians as gauge theories because of their
“broken symmetry.” There were isolated cases of mathematicians noticing
the importance of these equations, but no essential impression was made on
the mathematical community as a whole.

The original Yang-Mills equations are nonlinear extensions of Maxwell’s
equations in space-time. This means they are a system of second-order par-
tial differential equations in the four variables of space and time (3 + 1
dimensions). In the process of studying the quantum theory, the solutions to
the Euclidean four-dimensional second-order equations become important.
A series of important papers in the seventies starts with the discovery of
the first-order self-dual equations and the single instanton solution (which
one can think of as rotationally symmetric in ]R"') by the Russian physicists
Belavin, Polyakov, Schwarz, and Tyupkin in 1975. Conformal invariance
produces a five-dimensional family, which has turned out to be a complete
family of solutions of energy 8n’. A larger 5|k| parameter family of energy
|k|87z2 for all k£ was almost immediately discovered by a number of physi-
cists (Wilcek; Corrigan and Fairlie; Jackiw, Nohl, and Rebbi). The form of
the solutions employed the “’t Hooft Ansatz” of reducing the equations to the
linear equation Ap = 0. Almost immediately, mathematicians were able to
contribute information on solutions using an amazing variety of techniques
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from modern mathematics. Many of the original ideas were due to Michael
Atiyah, and in those early years he lectured all over the world on instantons
and gauge theories. Much of the purely mathematical development is surely
due to the interest and excitement he conveyed to his mathematical audiences
at that time.

I have left the rest of the early mathematical development to be inferred
from the table of papers in the subject. Simon Donaldson received the Field’s
Medal in 1986 primarily for the work in his Ph.D. thesis, published in 1983
in the Journal of Differential Geometry. Gauge theory has proved itself an
important tool of mathematics, which I for one believe will last. The fol-
lowing list of Early Papers in Gauge Theory and the bibliography are but
a small part of the evidence. Mathematical gauge theory provides the best
understood invariants for topological 4-manifolds [D1, A1], more invariants
for homology 3-spheres [A2], a description of the moduli space of stable
holomorphic bundles over Kéhler manifolds [D2], a tool for uniformiza-
tion theorems [S], concrete descriptions of cosmological objects, as well as
a special model toy for sophisticated mathematicians investigating abstract
mathematical phenomena.

It is an important part of physics? Has the child adopted by mathemati-
cians been rejected by its natural parents? The physics papers in 1975-77
listed in the following table are in general part of a scheme to describe quan-
tum chromodynamics. They represent failed attempts to understand strong
interactions by “tunnelling effects.” The physics behind these equations has in
general been completely mysterious to mathematicians, who are continually
frustrated in their attempts to either understand or believe even the simplest
calculations in quantum field theories of this geometric sophistication. The
failure of this model does not mean they are not present in physics. In their
broken form they are used in calculation for the standard model of particles.
Lattice gauge theory is a thriving user of CRAY time. String theory inter-
actions pre-suppose quantized gauge theories. Those who study the physics
referred to in the talks of Vaughn Jones, Victor Kac, and Ed Witten will find
them very much behind the group representation theory which has become
so important. So far we mathematicians have been able to make use only of
the classical theory which was not of much use in theoretical physics. Good
geometric mathematical models for quantizing gauge field theories promise
to be interesting to both sets of parents.

EARLY PAPERS IN GAUGE THEORY

(1954) C. N. Yang and R. Mills, Conservation of isotopic spin and isotopic gauge invariance,
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solutions of the Yang-Mills equations, Phys. Lett. B 59, 85-87.

(1976) G. °t Hooft, Computation of the quantum effects due to a four-dimensional pseudo-
particle, Phys. Rev. D 14, 3432-3450.

(1976) —, Symmetry breaking through Bell-Jackiw anomalies, Phy. Rev. Lett. 37, 8-11.
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SU(2) gauge theory, Phys. Lett. B 67, 67-71.
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(1982) C. H. Taubes, Self-dual Yang-Mills connections on non-self-dual four-manifolds, -J.
Differential Geom. 17, 139-170.

(1982) K. Uhlenbeck, Connections with LF bounds on curvature, Comm. Math. Phys. 83,
11-29.

(1983) M. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos.
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2. What is an instanton? What is all the excitement about? What is an
instanton, and why is it important?

Instantons are 4-dimensional objects, and share a lot of properties with
vortices (two-dimensional objects used to describe superconductivity), mono-
poles (three-dimensional cosmological objects), and Hermitian Yang-Mills
metrics (complex objects of any complex dimension). These are all close
relatives in a large diverse family of global geometric mathematical objects
defined by partial differential equations. We can include in this extended
family objects like geodesics, minimal and constant curvature surfaces, and
black holes. All these objects extend simple well-understood physical models,
satisfy nonlinear equations obtained from variational principles, exhibit cer-
tain topological properties, have a gauge or coordinate invariance, and have
important modern applications in topology, algebraic geometry, and appli-
cations. There are many good descriptions of the basic equations of gauge
theory in the list of basic reference books in §4. Here we give a more im-
pressionistic view by comparing the characteristic properties and behavior
of instantons with similar phenomena exhibited by minimal surfaces. It is a
powerful mathematical fact that intuition and techniques can be passed back
and forth between the two.

Physical origins. The minimal area surface equation was written down by
the Belgian physicist Plateau as an equation satisfied approximately by soap
films. Since nearly all of us played with soap films and bubbles as young
or not so young children, we think we understand minimal area surfaces
conceptually. One imagines the surface in the familiar three-space we live
in, and then transposes it into a curved space created by the imagination.
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Instantons represent tunnelling from flat three-dimensional space to itself.
No one plays with quantum effects as a child, and even the geometric con-
nection or vector potential which replaces the concept of surface is hard to
imagine. I think of the vector potential as having some of the stretchy prop-
erties of surfaces, but sitting over the spacial manifold, not in it.

Variational formulation. The concept of least area is familiar to me from
simple calculus problems. However, the formula for area of a general sur-
face in a three-manifold is quite complicated. The minimal area principle is
often replaced by minimal energy, or the L? norm of the derivative of the
embedding, s:X — X .

E(s) = / ids|(du)”.
z
The Yang-Mills integral is simply the L? norm of the curvature (or field):
2 d
YM(4) = /X \F 2(du)’.

For dimX = 2 = d and dimX = 4 = d, both integrals are conformal
invariants. This allows one to compactify X = R* U {0} = S* and X =
R*U {0} = s* in exactly the same way, and produces the same borderline
behavior for Morse theory. We think of the lack of compactness in Yang-
Mills at points much like we think of the “bubbling” of minimal surfaces.
Both are caused by scale or conformal invariance [SU, Se].

Linear models. Both the minimal surface (or harmonic map equations)
and the Yang-Mills equations can be thought of as nonlinear generalizations
of Hodge-de Rham theory. Harmonic p-forms o € Q°(M, R) satisfy the
closed condition da =0 and the Hodge equation d xa=0.

If s: M — N is a map, then ds = o is a one-form with values in s*TN .
In this context do = 0 is an identity and d; * @ = 0 is the harmonic
equation. Likewise, if F, is the curvature of a connection 4, D ,F, =0 is
the Bianchi identity and D, x F, = 0 is the Yang-Mills equation.

First-order equations. Both the harmonic map equation and Yang-Mills
are d-dimensional equations, where d is arbitrary. However, in the scale
invariant case, we have special equations. For o = ds, a one-form, and X a
complex Kihler manifold with complex structure operator J, a special very
tractible class of minimal surfaces or harmonic maps are the holomorphic or
antiholomorphic ones. They satisfy the Cauchy-Riemannian equations

J(s)a=xx*a.

Likewise, instantons and anti-instantons satisfy a similar first-order equa-
tion:
F,=%xF,.
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Complex equations. For ¥ and X arbitrary complex manifolds, impor-
tant examples of harmonic maps (or minimal surfaces) are generated by holo-
morphic maps ¥ — M . For Yang-Mills, if X is complex, there is a special
form of the Yang-Mills equations which requires the curvature F, to be a
two-form of type (1, 1) which is traceless with respect to the Kahler form.

Gauge invariance. The concept of a minimal surface does not carry with it
a preferred coordinate chart. Jesse Douglas’ original solution to the Plateau
problem (for which he received half the first Field’s medal) uses conformal
coordinates obtained via the Riemann mapping theorem and replaces area by
energy [Do]. No such elegant global solution for gauge fixing has emerged for
the coordinate problem in gauge theory. However, locally on the manifold
or locally in the space of connections, harmonic slices are used for technical
constructions.

Topological applications. Minimal surfaces can be used to study the topol-
ogy of three-manifolds [MY]. The solutions to the instanton equation have
emerged as the main tool for studying the topology of differential four-
manifolds [A1].

Moduli spaces. In studying moduli spaces of minimal surfaces, one is
forced to look to the Riemann moduli space for the models. Moduli spaces
of solutions to Yang-Mills exhibit many similarities with these same model
spaces of complex structures on Riemann surfaces. Similar compactification
phenomena exist.

Examples. One of the most satisfying aspects of the study of minimal
surfaces in 3-space is the existence of many immediate examples via the
Weierstrass representation. If f and g are any two holomorphic functions
on Q, then the piece of surface

X = {Re(f(z)(1 - £°(2)), if(2)(1 + £°(2)), 2f(2)g(2)), z€Q} €R’

is a minimal surface. This, and some hard to come by expertise with com-
puter graphics are all that one needs to draw many beautiful pictures of
minimal surfaces [H]. :

The Penrose transform converts solutions of F, = — x F, to holomor-
phic bundles over CP*. However, the complex analysis is considerably
more complicated! Fortunately, the *t Hooft Ansatz produces solutions 4 =
Im(;’—q(ln @)dq) to Yang-Mills from solutions to Ag + 1(03 =0 on R*,if

we regard R* = H as the quaternions. Some simple examples are available,
although I do not know what computer pictures would look like. I have seen
some elegant pictures of vortices and monopoles however [HMRVW].

3. Abelian vortices. The importance of the class of equations found in
gauge theory lies almost entirely in the structure of their moduli spaces of
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solutions. Of course, the moduli space of solutions to the self-dual Yang-
Mills equations on a four-manifold X is very complicated. However, in
some cases, special simpler solutions can be constructed using symmetries
[T1]. Here we present these simpler equations and describe the moduli space
of solutions on a Riemann surface. I feel this is appropriate. Clifford Taubes’
description in his thesis of the solutions to the vortex equation on R? was
one of the first analytical results on moduli spaces in gauge field theory [T2].
The present result is contained in a 1988 Ph.D. thesis of a Ph.D. student of
mine, Steven Bradlow [B].

In this application, we let X be a Kédhler manifold (it will specialize at the
end to a Riemann surface). The integral for the coupled Yang-Mills-Higgs
equations has the general form

[ [1EP + D0 = - 0P @y’
X

Here F, is the curvature in a principal bundle and ® is a section of an
associated bundle. The parameters A and ¢ are real. This integrand is
particularly easy to describe if the group is U(1) and & is a section of
a line bundle E. Fix a base connection D, on E. The unknowns are a
complex-valued functions @ twisted to liec in £ and an ordinary one-form
4,
F,=F,+d(iA), D,®=D,®+iAd-P.

The Euler-Lagrange equations are second order and have the form

d*F,+Im(xD,®,P)=0, AA®+%(—t+|®|2)®=O.
One family of solutions can be obtained by considering the solutions

®=0, d+F,=0.

These are the usual Yang-Mills equations and linear Hodge-de Rham theory
provides an analysis of these.

However, on a Kihler manifold we can use the complex structure to inte-
grate the functional by parts to obtain an equivalent integral

2 0,2,2 = 2 2 A 2.2 d 2
/X[|HA| +4|F,;"" + 2|0 @ — H,|D| +Z(t_|¢|) (du)” — 8n"ch,E.

Here Fj’z is the (2, 0) part of the curvature, H, = (w, F,) is the con-
traction of the curvature two-form with the Kahler form (xF, in two real
dimensions), and ch,E indicate topological contributions from the Chern-
Weil formulas. The first-order equations come from this integration by parts
exactly as they do for Yang-Mills or monopoles.

THEOREM. For A = 1, we have that the Yang-Mills-Higgs integral is
bounded below by the number —87t2ch2(E )+2ntch E. This topological mini-
mum is taken on by solutions to the first-order equations 9 ;® =0, Fj 2 =0,
and 2H,— |®f +¢=0.
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The surprise is that it is completely straightforward (given a little standard
complex differential geometry) to find all the solutions of this equation.

THEOREM (Bradlow). For fixed t > t, = 4nch, E(vol X )~', the solutions
of the first-order equations correspond in a one-to-one fashion to holomorphic
sections of holomorphic line bundles.

This gives a really simple description of the moduli space of solutions
over a Riemann surface £. For ch,E = k, specifying the k zeros of a
holomorphic section on X gives both the section and the line bundle.

COROLLARY. The moduli space of solutions to the first-order vortex equa-
tions on a Riemann surface in a bundle with ch,E = k corresponds to the

space F* (X) of k unordered points on X, possibly with multiplicity. These
points correspond to zeros of the Higgs field in the solution.

The analysis in this sample example reduces to the solution of an elliptic
equation of the form

—Au+|®%e" — (t—1,) =0

for a change of metric e” in the bundle E. This equation was studied
by Kazdan and Warner in conjunction with their investigation of conformal
deformations of metrics in two dimensions. Of course, the interesting and
new nonlinear analysis is in the extensions to the nonabelian case, where
contact is made with notions of stability in algebraic geometry. This work is
also in Bradlow’s thesis [B]. However, this simple abelian example serves to
illustrate what we can expect moduli spaces to look like.

4. And if there is a twenty-first century... . I am a pessimist. If I think
about the future, I think mainly about overpopulation, AIDS, fiscal instabil-
ity, the threat of nuclear war, and myriads of different seemingly unsolvable
social and environmental problems. In making my predictions, I must con-
fess that I worry there will be no twenty-first century suitable for the pursuit
of mathematics.

However, I am a mathematical optimist. It seems to me that Mathemat-
ics is intellectually in great shape. Current developments are exciting. The
problems of the world are not reflected as problems within the world of
mathematics. This is certainly one of its attractions for me. But I see it as
more than a refuge from real life. To me real progress has been made in
mathematics in the twenty years I have been a member of the community,
wheras I am not so sure about progress in the real world. During these years
the world of mathematics has opened up to make contact with neighboring
intellectual disciplines. We have been influenced by our old friends from
theoretical physics—but even more by greater changes such as the advent of
the computer age and by the daily use of mathematics in technology. The
response within the discipline of mathematics has been very positive, if a bit



INSTANTONS AND THEIR RELATIVES 475

slow and conservative. As a result, the content of mathematics in the form
of its fundamental ideas seems to me to be much richer. I look forward to
the next decades in the development of mathematics with great curiosity and
hope.

PreDICTION 1. Simplicity through complexity.

There are two basic approaches to simplicity in mathematics. One ap-
proach struggles with the choice of description of the mathematical object
via bases or coordinates until one obtains the right and self-evident minimal-
ist description. On the other hand one can throw in all possible descriptions
(as my mother used to say, everything and the kitchen sink) and then divide
out by equivalences to obtain a simple classification of objects. This suits
today’s complex world. The success of gauge theory is via this second com-
plexification route. I think we are not done with this trend of enlarging the
class of mathematical objects to unreal proportions and then dividing out by
even larger equivalence classes. One sees this scheme working in the success-
ful BRS quantization methods of physicists, and I predict we will continue
to follow this pattern, at least in geometry [FGZ).

PREDICTION 2. More beyond partial differential equations.

The last fifteen years has seen the domination of differential geometry by
techniques from partial differential equations. This might appropriately be
called the “Yau School” of differential geometry [Y]. If the influences from
physics continue, I think the era of domination will end. We should ask
ourselves, “What will the discovery of a unified field theory in theoretical
physics mean for differential geometry? The goal of a unified field theory is
to meld the theory of gravity (geometry) with particles (groups). Geometry
via algebra? It is not a completely new idea, of course.

PREDICTION 3. Geometric understanding of quantum field theory.

I hope that we mathematicians will soon have done with our fundamental
difficulties with quantum theory. We have had fifty years of lack of suc-
cess in explaining why Feynman diagrams work. I agree with many other
speakers that we will soon decode the complexity of conformal field theories
and redefine them as basic and simple mathematical objects. Topological
quantum field theory holds out a really hopeful new possibility for axiomatic
approaches to quantum field theory which will capture the essential geometric
ideas for mathematicians without bogging down in analytical contradictions.

PREDICTION 4. And after theoretical physics ?

We are going through a period where the primary outside influence on
differential geometry has been either cosmology or fundamental physics. We
learn the importance of 1, 2, 3, 4, 10, 26, and co dimensions (i.e., we study
small and infinite-dimensional manifolds). We should remember there are
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other sources of inspiration. How about robotics, which must be done in
large but finite dimensions and which is too complicated to be exact?

PREDICTION 5. Return to Boubaki.

My last comment is on style. I was generally taught in the famous Boubak-
ist style of definition, theorem, proof, and maybe example if there is time.
Coordinate descriptions were out: abstraction was in. Generalization abound-
ed. If you cannot do it in » dimensions, do not bother. This approach dates
back at least to Hilbert and his famous problems. My own mathematical in-
terests and the predominant mathematical style today has become far more
oriented towards the particular. One can also identify this trend in the talks
in this Centennial Celebration. Coordinate descriptions are a universal lan-
guage. Low dimensional topology is central. Lots of us think by example. I
do consider it unfortunate that examples are basically the only thing in many
useful subjects in mathematics which I personally do understand. This evo-
lution to the particular has been an important part of the opening up and
reaching out of the last twenty years.

Many scientists complain to me of the mathematical style of teaching of
twenty years ago. The outside world has barely yet understood the change!
I think this change has evolved along with the practical experiences of our
universal teaching experience. It is here the world may have had its effect on
mathematics: through our calculus students.

I see signs of reversion to the general in the next generation of students.
They again think coordinates, low dimensions, and SU(2) are old-fashioned.
This is as it should be. They have their own mathematics and its style to
discover.
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