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2,3,4,o0r 6. Comparison of lists (2.10.3) and (2.10.4) reveals it is exactly
the Coxeter graphs which have an m_ other than 2, 3,4, or 6 which do
not survive to become Dynkin diagrams.

7. This is for “reduced” root systems, which is what is encountered in
classifying simple complex Lie algebras. For real Lie algebras, nonreduced
root systems, e.g., BC, , can also occur [Helg2, Serr1].

3. Representation theory. Research into representations (actions on vector
spaces via linear transformations) of Lie groups, motivated on one hand by
physics [FISz, Mack1, ITGT1-17, Barg3] and on the other by the theory of
automorphic forms [GGPS, JaLa, Weill, BoCa] with deep roots in classical
analysis and with strong ties to differential equations, and of course also pro-
pelled by its internal dynamics, has been a major part of the mathematical
enterprise since roughly World War II. Considering the diversity of motiva-
tions, goals, people, and methods involved, the subject displays a remarkable
amount of unity. A major source of the unity is the philosophy of the orbit
method (also known by the more fashionable term geometric quantization
[Blat, Kiri, Kost1, Sour]). Although we can only sample from the wide range
of results that have been established, the overall coherence provided by the
viewpoint of the orbit method allows us to convey much more of the subject
than would otherwise be possible. An interesting technical point, however,
is that the orbit method is almost exclusively a method of interpretation, a
way of organizing results into a coherent (and often very beautiful) pattern.
It provides little in the way of technical tools for proofs or computations.
Thus, for example, several of the major results of Harish-Chandra on repre-
sentations of semisimple groups have found elegant interpretations in terms
of the orbit method [Ross1, 2, DuVe, DuHV]. However, these interpretations
have provided no short-cuts to Harish-Chandra’s proofs of these results.

A proper discussion of representation theory requires an aggravatingly long
technical preparation. We are going to try to ignore that here. For the conve-
nience of the reader, basic definitions and constructions have been summa-
rized in Appendix 1. The discussion below refers to Appendix 1 as necessary.
The reader who finds these references too distracting may wish to acquaint
himself, at least in a rough way, with Appendix 1 before reading the main
body of this section.

3.1. An example: the quantum harmonic oscillator. To illustrate the poten-
tial uses of representation theory, and its attraction, I can produce no better
example than the spectral analysis of the quantum mechanical harmonic os-
cillator. This is elementary almost to the point of simple-mindedness, yet it
contains the seeds of extremely varied developments that form subjects of
active current research. In particular, it is basic for the orbit method to be
discussed later. Also, it exhibits the extreme elegance of the best Lie algebraic
computations.
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3.1.1. A quantum mechanical system is defined by a selfadjoint operator
called the Hamiltonian operator on a Hilbert space # [Mack3]. Analysis
of the system involves describing the spectral decomposition, especially the
eigenvalues and eigenvectors, of the Hamiltonian. For the one-dimensional
quantum harmonic oscillator, the Hilbert space is LZ(R) , and the Hamilto-
nian is [Shan]

d? 2
3.1.1.1 T=—-Xx".
( ) I

To find the spectrum of T, consider the operators p, g on LZ(R) defined

by

6112 NW =L, a0 =ixf)

for f sufficiently nice in LZ(X ). It is easy to check that the four operators
T,p,q,and 1, the identity operator, span a four-dimensional Lie algebra:
the commutators

(3.1.1.3) [4, Bl = AB — BA

of two of these operators is a linear combination of some or all of them.
Indeed, easy computations show

(3.1.1.4) (@) [p,ql=1,
(b) [T, p] = —-2iq, [T, q] =2ip,

and of course the commutator of 1 with anything is zero.
Let us set

d . + d .

(3.1.1.5a) a—a-+x—p—zq, a —a—;—x—p+zq.
Then we observe
(3.1.1.5b) [a",a]=2,
(3.1.1.5¢) at =—a",
where a* indicates the operator on L2(R) adjoint to a, and
(3.1.1.5d) T =1(a*a+aa").
Further we can see that the vector

2
(3.1.1.5¢) vo=e 1
is annihilated by a:
(3.1.1.51) ay, = 0.

Now let us forget we are dealing with specific operators on L2(R) . Let
us simply suppose we have some Hilbert space on which are defined two
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operators, a and a', satisfying relations (3.1.1.5b,c), such that there is a
vector v, annihilated by the operator a. Define

(3.1.1.6) v, =@ () =a"(, ), Jj=1,2,3,....
I claim
(3.1.1.7) a(v,) = —2jv,_,.

This may be easily verified by use of the commutator identity
k—1 A .
[a, @)=Y (@) [a, a"1@") " = —2k(@")*".
=0
Using (3.1.1.6) and (3.1.1.7) we can verify that, if T is defined by formula
(3.1.1.5d) then
(3.1.1.8) T(vj)=—(2j+1)'uj.

Thus the v; are eigenvectors for T. Since T is selfadjoint, this means the
v, are mutually orthogonal. We can even determine the Hilbert space norms
of the v ; ’s. If the inner product is denoted by ( , ) we can compute

(v;,v;)= (aJ'vj_1 , a+'vj_1) = —(aa"L'vj_1 s V) =2J(V,_y, v _y)-
Hence
(3.1.1.9) (v;,v;) =2 j(vy, vy).
It follows that if we put
i ~1/2
(3.1.1.10) u, =2 ji(vy, vp) 0,

then the u ; form an orthogonal sequence of eigenvectors for 7', and

(3.1.1.11) au; = —(2))"u atu; =20+ 1)y,

j—1° j+1°

If we now return to the concrete situation which gave rise to equations
(3.1.1.5), we see that the commutation relations (3.1.1.4) (which follow from
(3.1.1.5a,b,d) allow us to construct what can be shown to be an orthonormal

eigenbasis for T, and in particular to determine its spectrum.

3.1.2. The structure revealed by the calculations above has significance far
beyond its application to the determination of the spectrum of the harmonic
oscillator. In particular, the commutation relations (3.1.1.4a) between p and
g, or (3.1.1.5a) between a and a* , which are known as Heisenberg’s Canoni-
cal Commutation Relations (CCR for short) (cf. [Mack3, Shan, Weyl3], etc.),
have been found to be fundamental to quantum mechanics. They imply
the uncertainty principle, which asserts that no particle state (i.e., vector in
LZ(R) ) can exist for which momentum and position are simultaneously well
defined (i.e., which is a simultaneous eigenvector for p, the “momentum
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operator,” and ¢, the “position operator”). See [DyMc, Folll, Korn, Shan],
etc.

Further, equation (3.1.1.7) shows that a triple (a, a", v,) consisting of
two operators a, a’ satisfying (3.1.1.5b,c) together with a vector v, sat-
isfying (3.1.1.5f) is essentially unique. This may be taken as a version of
another foundational result of quantum mechanics, the Stone-von Neumann
Theorem (cf. Theorem 3.3.2.4 and [Cart, Foll, Mack3, Howed, vNeu], etc.),
which asserts the uniqueness, under appropriate technical hypotheses, of the
canonical commutation relations. (We note that some sort of condition, such
as (3.1.1.5f), is needed to supplement the CCR (3.1.1.5a) in order to guar-
antee uniqueness. The possibilities for nonuniqueness were exploited by J.
Bernstein to obtain interesting results in distribution theory [Bernl, Bern2,
Borl2].)

3.1.3. The uniqueness result of §3.1 has an easy extension to larger systems
of operators. Let {p D qj};;l be a collection of 2n operators satisfying the
following relations (known again as the Canonical Commutation Relations):

(3.1.3.1) p;, P 1=0=1g;, 4] [p;, ql=1i0.

Then the p’sand ¢q’s, together with 1, the identity operator, span a (2n+1)-
dimensional Lie algebra, now widely known as the Heisenberg Lie algebra.
The Heisenberg algebra may be realized on LZ(R") by taking g; to be mul-
tiplication by ixj and p ; o be partial differentiation with respect to X;.
The Stone von-Neumann Theorem applies also to these systems and asserts,
again under some natural hypotheses, that the realization of the p’s and ¢°’s
by ixj ’s and a% ’s is essentially unique. One form of this result amounts

to a classification of the irreducible unitary representations (see §A.1.7) of
a certain nilpotent Lie group, known as the Heisenberg group (see §3.3 and
also [Cart, Foll, Howed, Moor], etc.). This is a basic step in the classification
of the unitary dual (see §A.1.7) of nilpotent and solvable Lie groups [AuKo,
Kiri, Moor, Puka3].

The Heisenberg Lie algebra is closely connected not only with the har-
monic oscillator, but with many other important equations of physics, both
classical and quantum [Sthr, Howe6, Engl]. Extended to infinite numbers of
variables, it plays a key role in quantum field theory [Segal, Shal, Thir] and
the theory of “loop groups” and vertex algebras [Garl, FrLm, FrKa, Kacl-7,
KaPe, Lepol, Lepo2].

In addition to these applications to physics, mathematical structures at-
tached to the CCR are important in algebraic geometry (invariant theory
[Howel], abelian varieties [Cart, Igus, Mumf]), number theory (theory of
0-series [Cart, Gelb2, HoweS, HoPS, KuMil, 2, 3, LiVe, ToWal, 2], etc., K-
theory [Rama]), and differential equations (Hamiltonian systems [Olve] (cf.
§3.2), pseudo-differential and Fourier integral operators [FePh, Folll, GuStl1,
Howe3, 4], several complex variables [Foll2, FoSt, Stan], and D-modules
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[Borll, Bernl, Bern2]). Some of these topics will be touched on in the dis-
cussion which follows.

3.2. The orbit method. The philosophy which describes a large portion
of the representation theory of Lie groups is a descendant of the correspon-
dence principle of early quantum mechanics [Bohr, Iken, Jamm]. Since it
is a philosophy and not a theorem, it is difficult to formulate in such a way
that is not clearly false in some cases, but still appears to have content. But
roughly the idea is that, if G is a connected Lie group, then for each “clas-
sical dynamical system” for G, there should be a corresponding “quantum
dynamical system,” which would be a unitary representation.

3.2.1. What could this mean? The key to the matter is symplectic geometry
[AbMa, Grom, GuSt, Wein]. This is geometry based on a skew-symmetric
bilinear form, in contrast to Euclidean or Riemannian geometry, which is
based on a symmetric bilinear form. It is a slippery, less tangible kind of ge-
ometry; there is no notion of “distance” or “angles” in symplectic geometry.
However, somewhat latterly because of its elusive nature, symplectic geom-
etry has come to be seen to be of fundamental importance. Lie theory in
particular seems to be steeped in symplecticism, owing to the anti-symmetry
of the Lie bracket.

Let V' be a finite-dimensional real vector space. A symplectic form ( , )
on V is a nondegenerate skew-symmetric bilinear form. Nondegeneracy
means that the map a: V — V" defined by

(3.2.1.1) a)@) =@, v), wv,v eV,

is an isomorphism. Standard elementary arguments [Lang3, Jaco2] show that
for V' to have a symplectic form, V' must have even dimension, say 2#n.
Further, given n, there is essentially just one symplectic form. Precisely, we
can, again by very elementary arguments, always find a symplectic basis for
V', that is, a basis {e;, f;},.;<,  such that

(3212)  (e,e)=0=(f,f), (f.e)=0,;, 1<i,j<n,

where 9, i is Kronecker’s delta. If x,, y, are the coordinates with respect to
the symplectic basis (we call them symplectic coordinates), then

n
(3.2.1.3) (v, vy =" Xy, - xpi.
i=1

From a symplectic form on V', we can construct a Lie algebra structure
on C™(V,R), the real-valued smooth functions on V ; the Lie bracket in
this case is known as the Poisson bracket. In formulas, in the coordinates of
(3.2.1.3), we have

(3.2.1.4) {P,Q}:i‘ﬁ 90 _ 9P 99 P,QeC%(V).
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There are at least three conceptual ways of thinking about this formula. Much
of the richness of Hamiltonian mechanics stems from the fact that they all
yield the same answer, formula (3.2.1.4).

First, recall that the derivative or differential

(3.2.1.5) dP = Z ——d +af dy

i

is a function on V' with values in V. We know the symplectic form defines
an isomorphism o from ¥ to V*. Thus we can consider a_l(dP) and
-l (dQ), which are V-valued functions on V. We can compute

(3.2.1.6) “1(dP) = i oF ap

l

i
and from this that the Poisson bracket may be expressed as

(3.2.1.7) {P,Q}=(a"'(dP), a"'(dQ)).

Second, we can regard the V'-valued function o (dP) as defining a vector
field on ¥ . (Indeed, this is the correct thing to do from the point of view of
differential geometry.) We can then differentiate a function with respect to
a'l(dP) . The Poisson bracket can also be expressed in these terms:

(3.2.1.8) {P, 0} =a ' (dP)(Q).

Third, if we think of both a_l(a'P) and o (a'Q) as vector fields, then
we can consider their Lie bracket, as in formula (2.3.8), and we have

(3.2.1.9) [~ (dP), "' (dQ)] = o~ (d{P, Q}).
This formula shows that the map
(3.2.1.10) P—a '(dP)

is a Lie algebra homomorphism from C*(V ; R), equipped with the Poisson
bracket, to the space of vector fields on V', with their natural Lie bracket.

This third interpretation of Poisson bracket leads one to ask what the image
of the map (3.2.1.10) looks like. From the form (3.2.1.6) of a”'(dP) itis
clear that it cannot be an arbitrary vector field; its coefficients must satisfy the
obvious “integrability conditions” imposed by the equality of mixed partial
derivatives, namely, if we write a vector field

(3.2.1.11a) v=>Y ae+bf,

then if v = a_l(dP) for some P € C*(V; R) we must have

. da, da. b, b. Ob.

(3.2.1.11b) 04, _94;  9a; _ 99 9b _ 9%
Byj 0y; 6xj 0y, axj ox;

Conversely, the Poincaré Lemma [Gold, Ster] tells us the conditions
(3.2.1.11b) do guarantee that v will be of the form a’l(dP) . But of more
interest are the following equivalent geometric interpretations of the integra-

bility conditions.
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PROPOSITION 3.2.1.12. A vector field v is in the image of map (3.2.1.10)
if and only if

(i) the natural action of v on C* (V) is a derivation of the Poisson bracket,
ie,

(3.2.1.13) v({P, Q}) ={v(P), @} +{P, v(Q)},

or
(ii) the natural action of v on exterior forms on V annihilates the form

(3.2.1.14) w=Y dx,Ady,

i=1

In terms of the one-parameter group ¢, (or local group) generated by v,
as described in §2.1, condition (3.2.1.13) says that the ¢, will be automor-
phisms of the Poisson bracket, and the equivalent condition (3.2.1.14) says
the ¢, will preserve the differential form w. Clearly the diffeomorphisms
satisfying either of these conditions will form a group, which is sometimes
called the group of symplectomorphisms. (A more traditional term is canoni-
cal transformation.) Roughly speaking, the vector fields satisfying the equiv-
alent conditions of Proposition 3.2.1.12 form the Lie algebra of this group;
consequently we will denote the space of them by Vectsp(V) . This allows
us to summarize the discussion just above by saying the map (3.2.1.10) takes
C(V;R) to Vectg (V).

An important technical point about the map (3.2.1.10) is that it is almost
but not quite an isomorphism: it has a one-dimensional kernel, consisting
of the constant functions. Also, it is easy to check from formula (3.2.1.4)
(by letting P be a fixed function, and letting Q vary through the coordinate
functions Xx;, y; ) that the constants are precisely the center of the Lie algebra
C*(V; R) with Poisson bracket. Thus we have an exact sequence

(3.2.1.15) 0—R— C™(V; R) " Vect, (V) — 0

which exhibits C*(V;R) as a one-dimensional central extension of
Vectg, (V).

To illustrate the difference the central extension (3.2.1.15) makes, consider
the Lie algebra generated by the coordinate functions Xx;, y;. It is easy to
check that

(3.2.1.16) o Ndx)=-f, o (dy)=e,.

Hence the vector fields a_l(d/l) , A€ V", are just the directional derivatives
on V ; they form an abelian Lie algebra, whose corresponding group is just
V', acting on itself by translations. However, under Poisson bracket, the x;
and y; generate a nonabelian Lie algebra: we have

(3.2.1.17) {x,x}=0={y,,y;}, {y;,x}=9;
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These are simply a version of the CCR (see (3.1.3.1); the normalization here
is slightly different from (3.1.3.1)).

Hence the Lie algebra generated by V" under {, } isa (2n + 1)-dimen-
sional, two-step nilpotent Heisenberg algebra

(3.2.1.18) h(V)=V"®R.

Although when realized via the Poisson bracket, the Heisenberg Lie algebra
is described in terms of V™, it is more natural to describe it in terms of V',
which is easy to do since we have identified ¥ and V" via the map o of
formula (3.2.1.1). Thus we prefer to write

(3.2.1.19a) . V)=V oR.
Then the Lie bracket looks like
(3.2.1.19b)  [(v, 1), (W', )]=0, (v,vY), wv,veV,t,feR

Finally, to conclude this subsection, we note that the space SZ(V*) of
homogeneous quadratic polynomials forms a Lie algebra under the Poisson
bracket. This algebra normalizes the Heisenberg Lie algebra h(V') discussed
just above, and via the map (3.2.1.10) it is sent isomorphically to the Lie
algebra sp(¥') of the symplectic group Sp(¥) of linear transformations of
V' which preserve ( , ). (See §3.5.5 for more discussion of this remarkable
realization of sp(V).)

3.2.2. We can use the discussion of §3.2.1 to define a symplectic manifold
M in a manner entirely analogous to the usual definition ([Gold, Helg2,
AbMa, Ster], etc.) of smooth manifold: one covers the underlying point
set of the manifold M with local coordinate patches, such that the local
coordinate functions are the coordinates with respect to a standard symplectic
basis of a symplectic vector space; instead of letting the coordinate changes
on overlapping charts be arbitrary diffeomorphisms, one requires them to be
symplectomorphisms. Then if one interprets Proposition 3.2.1.12 using the
standard language of differentiable manifolds (see references just above), one
sees M has the following properties:

(i) There is a distinguished closed exterior 2-form @ on
M, ie., a section of A’T*(M), with the property
that the alternating bilinear form induced by @ on
the tangent space at each point of M is a symplectic
form. (The 2-form w will have the form (3.2.1.14)

(3.2.2.1) in each local chart.)

(ii) The space C°°(M) is endowed with a Lie algebra
structure, called the Poisson bracket, and denoted
{, }. This will satisfy the appropriately coordinate-
free versions of properties (3.2.1.7), (3.2.1.8), and
(3.2.1.9). (On each coordinate patch, the bracket
{, } will be given by formula (3.2.1.4).)
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Alternately, one could define a symplectic manifold M as one having a
distinguished closed 2-form, as in (3.2.2.1)(i), or as having a Poisson bracket
structure on C®(M ; R), as in (3.2.2.1)(ii). Some basic lemmas (Darboux’s
Theorem) then guarantee that M can be covered by local coordinate charts,
in the way we imagined to begin with ([AbMa, Olve, Ster]).

In any case, the Poisson bracket gives us a homomorphism of Lie algebras

C*®(M; R) — Vectg, (M),

where again Vectg (M) is the Lie algebra of vector fields which generate
(local) one-parameter groups of symplectomorphisms. The kernel of the map
is the space of locally constant functions on A . Since the characteristic
functions of the connected components of M form a canonical basis for
this space, we may identify it with the Oth cohomology group H 0(M ). Also,
we have seen that via the map « of formula (3.2.1.1), the space Vectg, (M )
is identified with the closed 1-forms on M , and the map from C* (M ; R) is
simply exterior differentiation. Hence the cokernel of this map is identified
to the first deRham cohomology group H 1(M ). Thus we have an exact
sequence

(3.2.2.2) 0 — H°(M) — C*(M; R) — Vectg,(M) — H' (M) — 0.

There are three main sources of examples of symplectic manifolds.

(a) Cotangent bundles: If M is any manifold, then 7" (M), the cotangent
bundle of M , is in a natural way a symplectic manifold [AbMa, Blat, Ster].

(b) Kdhler manifolds [LaBe, Hart, Weil3]: Let U be a complex vector
space, and let ( , ) be a Hermitian inner product on U. Then the imagi-
nary part of (, ) defines a symplectic form on the real vector space obtained
from U by restricting scalars. A Kihler manifold is a complex manifold
M which is endowed with a Hermitian metric on its holomorphic tangent
bundle, whose imaginary part is a closed (1, 1)-form, and which thus de-
fines a symplectic structure on M . Kihler manifolds are significant because
they include all nonsingular projective algebraic varieties: complex projective
space CP” possesses a Kihler metric, the Fubini-Study metric [GrHa], the
unique metric invariant under the action of the unitary group U, ; on CP";
and any nonsingular projective subvariety of CP” inherits this metric by re-
striction. For purposes of obtaining symplectic manifolds, one can equally
well consider “pseudo-Kihler” manifolds, defined in the same way as Kéhler
manifolds, except the Hermitian “metric” need not be positive definite.

(c) Coadjoint orbits: For us, this is the most important class of examples.
Let G be a Lie group, write Lie(G) = g, and let g* be the dual space to g.
The group G acts on g via Ad, the adjoint action, and therefore acts on g*
via the contragredient to Ad, called the coadjoint action, and denoted Ad”.
Consider A e g". Let

(3.2.2.3) R, ={geG:Ad"g(2) = 1}
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be the stabilizer or isotropy group of A, the subgroup of G which leaves 4
fixed. Its Lie algebra is

(3.2.2.4) r, = {x € g: ad"(x)(4) = O}.

The map

(3.2.2.5) e:8— Ad"g(A)

defines a surjective, G-equivariant map from the coset space G/R; to
(3.2.2.6) G, = {Ad"g(4) : g € G},

the Ad"G orbit through A. Differentiating the map e, at the origin gives
an isomorphism

(3.2.2.7) g/r, ~T(),

of the quotient g/r, with the tangent space to &, at 1.
Consider on g the antisymmetric bilinear form

(3.2.2.8) (x, ), =Allx, »D).
One can easily check that the radical of the form ( , ),—defined as

{xeg:(x,y),=0forall g €g},

that is, the vectors which are orthogonal to everything with respect to the
form (, ), on g—is precisely r,. Hence the form (, ), factors to define
a non-degenerate form on the quotient g/r,. In view of the isomorphism
(3.2.2.7), we can push ( , ), forward to define a symplectic form on the
tangent space 7(&,), to &, at 1. Since this can be done at every point of
g", and since it is a canonical construction, this will produce a G-invariant
differential 2-form which induces a symplectic form on the tangent space to
@, at every point. A computation shows [GuSt, AbMa] that this canonically
defined 2-form is in fact closed. (It should not be surprising that this is
essentially a consequence of the Jacobi identity.) Hence &, is a symplectic
manifold; further G acts transitively on &, via symplectomorphisms.

Some coadjoint orbits are isomorphic to cotangent bundles, and others
support Kéihler or pseudo-Kéhler metrics.

Lie [LiEn, vol. 2, p. 294] was apparently aware of the symplectic structure
on coadjoint orbits, or at least the associated Poisson bracket, but it was
subsequently forgotten until the 1960s when its importance for representation
theory was appreciated [Bere, Blat, Kiri, Kost1].

3.2.3. Let G be a Lie group and let M be a connected symplectic man-
ifold. Suppose G acts on M by symplectomorphisms. Differentiating the
action of G yields a homomorphism B from Lie(G) to Vectg (M ). De-
note the image of Lie(G) in Vectsp(M ) by g. We would like to lift g to
a subalgebra of C°°(M). According to the sequence (3.2.2.2) there are two
obstructions to doing this. The first is that g may not be in the image of
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the map from C*(M) to Vectsp(M ), that is, some elements of g may rep-

resent nontrivial cohomology in H l(M ). If M is simply connected, then
H' (M) = 0 [Mass], so we can eliminate this obstruction by passing to a cov-
ering of M if necessary. So suppose g is in the image of C°°(M). Denote
the inverse image of g in C*° (M), via the sequence (3.2.2.2), by g. Then
we have a diagram:
Lie(G)
Bl
0 - R - g — g -~ 0

The Lie algebra g is a central extension of g by R, and thus defines a
certain cohomology class y in H? (g; R) (see [Jacol, Kostl]). We can lift
the homomorphism f to a homomorphism

B: Lie(G) —» § C C=(M; R)
if and only if the pullback 8*(y) € H 2(Lie(G) ; R) vanishes. If this happens,
then there is a choice of liftings § of B, corresponding to the homomor-
phisms of Lie(G) to R (which form the group H'(Lie(G); R) ~ (g/g*)").

By a Hamiltonian action B of G on M, we mean an action of G on M

by symplectomorphisms, together with a compatible homomorphism
B: Lie(G) —» C*(M; R)
such that the diagram
Lie(G)
(3.2.3.1) / 8
0 - C - C°(M;R) — Vectsp(M) - 0
commutes [GuSt 1, Kirw, Kost1].

REMARKS. (a) A standard basic fact about a semisimple Lie algebra s is
that Hz(s; R) = Hl(s; R) = 0 [Jacol]. Thus if G is semisimple, then
any action of G by symplectomorphisms is automatically Hamiltonian, in a
unique way.

(b) For a general Lie group G, a symplectic action of G may be re-
garded as a Hamiltonian action of an appropriate central extension of G;
thus the action of a symplectic vector space on itself by translations comes

from a Hamiltonian action of the associated Heisenberg group, as in formulas
(3.2.1.16)—(3.2.1.19).

Suppose we have a Hamiltonian action ﬁ of G on the symplectic mani-
fold M . By duality, the homomorphism f: Lie(G) — C™ (M ; R) gives us
a mapping

u ﬁ: M - g* H

pp(m)(x) = B(x)(m), meM,xeg.
It is easy to see that the mapping u 5 is equivariant for the action of G.
Because u 8 describes the angular momentum of a particle in a particular
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case (the action of 0; on R’ x R* ~ T*(R?) [AbMa, GuStl]), it is called
the moment map.

The geometry of the moment map for a general Hamiltonian action is quite
interesting, and quite relevant for representation theory [Ati2, GuSt3, Kirw2,
DuHYV]. But right now we focus on the case when G acts transitively on M .
In this case, the image of u 5 is clearly a single coadjoint orbit. Further, an
elementary argument shows that u 5 must be locally a diffeomorphism. Thus
any homogeneous Hamiltonian G-action must be a covering space of some
coadjoint orbit [GuSt1, Kostl]. Or in other words, up to coverings, coadjoint
orbits provide the universal examples of transitive Hamiltonian G-actions.

3.2.4. At the start of §3.2 we made a vague reference to the notion of a
“classical dynamical system” for G . Now we can specify that we will take this
to mean a Hamiltonian G-action. The rationale for this choice comes from
the Hamiltonian version of classical mechanics, which shows that a classical
conservative dynamical system satisfying Newton’s Laws can be expressed as
a Hamiltonian action of R [AbMa, Arno]; besides this it has been observed
to work.

Given this meaning of “classical dynamical system,” the discussion of
§3.2.3 can be taken as showing that the irreducible, i.e., transitive, classi-
cal dynamical systems for G correspond to coverings of coadjoint orbits.
Thus the principle enunciated rather imprecisely at the start of §3.2 can now
be stated more clearly: we hope to be able to associate irreducible unitary
representations to (covers of) coadjoint orbits for G. The extent to which
this hope is realized will be surveyed in the next subsections.

3.3. Nilpotent groups. The hope expressed in §3.2.4 is realized perfectly for
nilpotent groups, as was discovered by Kirillov [Kiri, Pukal, Moor]. (Stat-
ing things this way is, in historical terms, to put the cart before the horse;
Kirillov’s work was a primary inspiration for the philosophy expressed in
§3.2.)

3.3.1. A key notion in Kirillov’s construction is that of polarization. Recall
the discussion of coadjoint orbits in §3.2.2. Let G be a Lie group, g =
Lie(G),A € g, R, = the stabilizer of 4 under Ad", and r, = Lie(R,).
By a polarization for A, or polarizing subalgebra, or maximal subordinate
subalgebra we mean a Lie subalgebra p of g such that

(3.3.1.1) p is a maximal isotropic subspace for the form( , ),.

Isotropic means that (x,y), = 0 for all x,y € p. Maximal isotropic of
course then means that there is no subspace of g which properly contains p
and which also is isotropic for { , ),. The duality theorems of basic linear
algebra imply that if p is a polarization then

@r,Cp,

(3.3.1.2) g 1/ .
(ii) dimp = 5(dimr, + dimg).
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Thus the single condition of (3.3.1.1) could be replaced by the two conditions:
(i) p2r,, and (ii) p/r; is maximal isotropic for the symplectic form defined
by (, ), on g/r;.

Before stating Kirillov’s results, we should note that for a connected, sim-
ply connected nilpotent group N, the exponential map exp: Lie(N) — N is
a diffeomorphism [Malc, CoGr, Dixm?2].

THEOREM 3.3.1.3 (Kirillov). Let N be a connected and simply connected
nilpotent Lie group. Set Lie(N) =n.

(a) There is a natural bijection between the unitary dual N and the set
n*/Ad" N of coadjoint orbits for N .

(b) Pick A € n*. The representation p, corresponding to the coadjoint
orbit @, through A may be realized as follows. Let p C n be a polarization
for A. (These exist.) Let P = expp be the connected subgroup of N with
Lie algebra equal to p. It is a closed subgroup of N. Because p is isotropic
Jor (, ),, the formula

(3.3.1.4) w,(expx) = &) XEp,

defines a unitary character of P. The unitarily induced representation (see
§5A.1.14 and A.1.16)

(3.3.1.5) 2—indSy, ~ p,

is the representation we are looking for.
(c) Every element of N is strongly trace class (see §A.1.18). For an Ad*N-
orbit @ C n*, the character é’pg of the corresponding representation p, can

be computed as follows. On @, there is an Ad* N-invariant measure, unique
up to multiples. Denote it by d pu. For f € C.;°(N), let foexp e C.°(n) be
the pullback to n of f via the exponential map. Define the Fourier transform
from functions on n to functions on n* in the usual way:

(3.3.1.6) 3() = / d(x)e ™) gx e L'm),

where dx is a Haar measure on n. Then for appropriate normalization of
the invariant measure dgu on @, we have

(33.0.7) 0, (1) = [[(Foexm) Wdgn,  FeCTW).

3.3.2. REMARKS. (a) The proof of Theorem 3.3.1.3 proceeds by induc-
tion on the dimension of N, using the tools of the “Mackey Machine” (see
[FeDo, Mack4, Rief]) for computing representations of group extensions. In
fact, the necessary computations are quite limited and depend mainly on un-
derstanding the Heisenberg group, the basic group of quantum mechanics,
whose Lie algebra is described in formula (3.1.3.1) or (3.2.1.19).

(b) As well as being important for the proof of Theorem 3.3.1.3, the
Heisenberg group provides a good illustration of it. Let 77 be a symplec-
tic vector space. If we again use the isomorphism (3.2.1.1) between V' and
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V", we can write
(3.3.2.1) h(V)'=(VeR) ~VaR

Using the expression (3.2.1.19b) for the Lie bracket in h(}"), and formula
(2.4.8) for the adjoint action, we can compute that
(3.3.2.2)
Ad*exp(v, H(v', ) =@ +fv,{), (,)ehl), @, )ehlV).

Denote the connected, simply connected group whose Lie algebra is h(})
by H(V). From formula (3.3.2.2), we can easily verify the following de-
scription of Ad*H (V) orbits.

The Ad"H(V) orbits in h(V) are

(3.3.2.3) (i) the points (v, 0), v' eV,
(i) the hyperplanes {(v',¢):v' eV}, { e R-0.

If we plug this data in Theorem 3.3.1.3 we obtain a complete description
of the representations of , H(V). There are one-dimensional representations
X, (exp(v, 1)) = 2> ' € V', which factor to the abelian quotient
H(V)/ZH(V). Here ZH(V) is the one-dimensional center of H(V); it
is also the commutator subgroup. The non-one-dimensional representations
correspond to the hyperplanes (3.3.2.3)(ii), and so Theorem 3.3.1.3 special-
izes to the following classical result (cf. [CoGr, Folll, Howe2, Neum], etc.).

THEOREM 3.3.2.4 (Stone-von Neumann). For each nontrivial character
of ZH(V) (~R), there is up to unitary equivalence exactly one irreducible
unitary representation p, of H(V) with central character x (see §A.1.7.4).
The representation p, may be realized as an induced representation

(3.3.2.5) py~2—ind] 7,

where A C H(V) is any maximal abelian connected subgroup, and } is any
extension of x from ZH(V) to A.

It is worthwhile to give a concrete description of the representations Py s
to emphasize how close we are here to the heart of classical harmonic analysis
[FePh, Folll, Howe2, 3]. For this we can first observe that for s € R”, the
map

(3.3.2.6) dh(V) - h(V),
d(v,t)=(sv,s’t), (v,t)€h¥),

is an automorphism of h(¥). The corresponding automorphisms of H(V)
will permute almost transitively (there will be two orbits which are mutual
complex conjugates) the characters of ZH(V'). Thus up to the action of the
d, and complex conjugation, there is only one (infinite dimensional unitary
irreducible) representation of H(V). So we only need to describe one such
representation. But this is in fact given by the realization of h(R" ® (R")")
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via the operators ;2 and ix; on L*(R"), as described in §3.1.3. Thus,
J

via this representation, the universal enveloping algebra % (h(R" ®R" )) will
be sent to the algebra of polynomial-coefficient differential operators on R” .
(See §A.1.13 for an explanation of how to derive a representation of the
enveloping algebra.)

3.4. Solvable groups. Kirillov’s results appeared in 1960 [Kiri]. Through a
lot of hard work since then, the basic principles embodied in Kirillov’s theory
have been extended to encompass a large portion of representation theory of
Lie groups. The next class of groups to be analyzed was solvable groups. We
briefly outline this development.

Inspection of Theorem 3.3.1.3 makes clear that the bijection of part (a)
between orbits and representations is implemented in two quite distinct ways:
first, by an explicit construction of the representations, and second by a de-
scription of the character of a representation in terms of the orbit. It might
seem that a construction of the representation is very much to be preferred
to just a description of the character. However, it should be noted that the
construction of the representation involves a noncanonical intermediate con-
struction between the orbit and the representation, namely a polarization.
While it is always possible to find a polarization, there may in fact be many,
and the choice of a particular one is arbitrary. However, one shows that
all the representations one constructs by means of various polarizations are
equivalent. (A key fact used to do this is the Stone-von Neumann Theorem).
This “independence of polarization” allows the construction to succeed. On
the other hand, the description of the character via formula (3.3.1.7) is canon-
ical. There is even an a priori description of the proper normalization of the
measure d,u [Moor, Puka2]. Below we will discuss the generalizations of
both parts (b) and (c) to other classes of Lie groups.

3.4.1. For solvable Lie groups, the situation is more complicated, but quite
satisfactory. Kirillov’s work was generalized almost immediately [Bert] to the
class known as exponential solvable groups, which are characterized as those
solvable groups G whose simply-connected cover G is such that the expo-
nential map exp: Lie(G) — G is a diffcomorphism [Moor, Dixm3]. For
exponential solvable groups the bijection between orbits and representations
holds, and can be realized using induced representations by an explicit con-
struction using polarizations, just as in the nilpotent case. However, two
difficulties arise:

(i) Not all polarizations yield the same representation, or even an irre-
ducible representation;
(i) Not all representations are strongly trace class.

3.4.1.1. Both difficulties are already illustrated by the two-dimensional
“ax + b group”—the group of affine transformations of the line. This may
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be realized as the set of 2 x 2 matrices of the form

(3.4.1.1.1) G={[g i’]:beR,aeR*x}.

(We restrict a to be positive in order to have a connected group.) The Lie
algebra of this group is the space of matrices

a B
(3.4.1.1.2) [0 0] , o, BeER,
and its dual may be realized as the space

A0
(3.4.1.1.3) [# 0] , A, ueR.

The pairing between the matrices (3.4.1.1.2) and (3.4.1.1.3) is given by taking
the trace of products. The coadjoint orbits are

A0
(3.4.1.1.4) @;1={[0 O}} for each 1 € R,

ﬁ+={[i 8]:16R,u>0}, é’_={[i 8]:26R,u<0}.

The representations corresponding to the one-point orbits are the linear char-
acters (one-dimensional representations) of the group. These are trivial on
the commutator subgroup G' ,

(3.4.1.1.5) Gl={[(1) ll’] :beR}.

There are two non-one-dimensional irreducible representations, correspond-
ing to the orbits #* and @~ . The Lie algebra of the group G' is a polar-
ization for any element in either of these orbits, and we have

(3.4.1.1.6) Pt z2—indgl Xy [2] co*,
where xu([(l) g]) = g™k However, the group
(3.4.1.1.7) A={[g (1)] :aeR*x}

also defines a polarization of any element of @* . If y is any character of
A, then the unitary representation of G induced from yx is equivalent to
the sum p . @ py- .

The representations p,+ are also not strongly trace class. In fact, if =
C°(G) is such that x,(f) # 0 for some 4, then p,+(f) will not be trace
class. Here g, indicates the character of G corresponding to the orbit &,

of (3.4.1.1.4). Precisely
a b 2mid,
w([5 1)) =
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3.4.1.2. Despite these two complications, the situation for exponential
solvable groups is quite well understood. There is a simple criterion first
formulated by Pukanszky [Moor, Puka5] to guarantee that a polarization
will produce the appropriate irreducible representation. Further there is a
clean description of the representation produced by any polarization [Moor,
Vergl].

With regard to generalizing the trace formula (3.3.1.7), one must recog-
nize that it will not generalize completely because not all representations are
strongly trace class. Roughly speaking, it will be closed orbits which corre-
spond to strongly trace class representations. (Observe that the orbits o of
(3.4.1.1.4) are not closed.) Even for orbits for which there is a trace formula,
a new phenomenon enters: it is necessary to multiply a function by an ap-
propriate normalizing factor, which depends on the orbit. Thus for an orbit
@ for which it is valid, the trace formula takes the form

(3.4.1.2.1) 0pp(f)=/ﬂ((foexp)(Lﬁ))A(u)dﬁ,u, feCX(G),

where L, is an analytic function on Lie(G) [Moor, Dufll, Pukad]. The
need to introduce L, stems from two sources:
(i) For a general exponential solvable group G, the exponential map

exp: Lie(G) —» G

will not take Haar measure on Lie(G) to Haar measure on G.

(i) The modular function of (the connected subgroup of G whose Lie
algebra is) a polarization of A € & may not agree with the restriction of the
modular function of G.

3.4.2. For general solvable groups, one encounters several difficulties which
did not arise in the exponential solvable case.

3.4.2.1. (i) The representations of solvable groups can be badly behaved:
these groups need not be type I in the sense of C*-algebras [Dixm1].

(i) Not all representations are realizable as monomial representations,
i.e., as induced representations from linear characters—in terms of the orbit
method, this means there are elements A € Lie(G)" for which there is no
polarizing subalgebra in Lie(G). An example is provided below.

(iii) Orbits @ C Lie(G)" may not be simply connected—equivalently,
their isotropy groups in G, the simply-connected cover of G, may not be
connected (consider E,, the isometry group of the Euclidean plane). Also,
orbit structure may be highly irregular—orbits may not even be locally closed.
(A semidirect product R x R*, where R acts on R* by a sum of mutually
irrational rotations, provides the simplest example. It was first noted by
Mautner.)

These phenomena force a substantial revision in the orbit method, and
a naive one-to-one correspondence between coadjoint orbits and representa-
tions no longer exists. However, there still exists a highly satisfactory, detailed



164 ROGER HOWE

theory which retains much of the flavor of Theorem 3.3.1.3 [AuKo, Moor,
Puka3, Puka6]. We will describe how the new features of this theory solve
the problems 3.4.2.1.

First one must lump coadjoint orbits into equivalence classes of “quasior-
bits.” Two orbits define the same quasiorbit if their closures in Lie(G)* are
equal. It turns out that a quasiorbit in Lie(G)" is an orbit for a slightly larger
group G' 2 G such that the quotient G'/G is abelian [Puka3].

Second, one must seek to parametrize, not representations, but primitive
ideals in C*(G) (see [Dixm2]). Here C*(G) is the group C™-algebra (cf.
8A.1.12, especially definition (A.1.12.6)). Recall that if the group G is type
I, then there is a natural bijection between equivalence classes of irreducible
unitary representations and primitive ideals in C*(G) [Dixm2]. But if G
is not type I, there may be infinitely many irreducible representations whose
kernel in C*(G) is a given primitive ideal. (This is in fact fairly typical
behavior. The easiest examples may be induced representations of the rank
3 integral Heisenberg group.)

Third, the mapping to quasiorbits from primitive ideals is many-to-one.
The fibers are quotients of the duals of subgroups of the component groups
of the isotropy groups [Puka6].

Let us state the result precisely. Let G be a connected and simply con-
nected solvable Lie group, with Lie algebra Lie(G). Consider A in Lie(G)".
Let R, C G be the stabilizer of A4 under the coadjoint action Ad*G, and

let Rg be the identity component of R,. Recall that r, = Lie(Rg) is the
radical of the form ( , ), associated to 4 (cf. (3.2.2.4)). There is a unique

character x, on Rg defined by
(3.4.2.2) X;(expr) = &) , rer,.

It is easy to see that the component group R,/ Rg is abelian. Also, since R,
stabilizes 4, the character x, on Rg is clearly invariant under conjugation
by all of R;. Hence the quotient group ):% / ker x, is a central extension of
R, /Rg by the group Rg /ker 4, which we may identify to the unit circle T
by means of x. Thus R,/kery, is a two-step nilpotent group (or possibly
abelian—the extension may split), and we have an exact sequence

(3.4.2.3) 1-T—R,/ker x, — R,/R) — 1.

Let S, be the image in R, /Rg of the center of R,/kery, .

THEOREM 3.4.2.4 [Puka6). Let G be a connected, simply connected solv-
able Lie group. Let P(C*(G)) = P(G) denote the space of primitive ideals of
C*(G). Let (Lie(G)*/Ad*G)~ be the space of coadjoint quasiorbits. There is
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a mapping
P(G)
(3.4.2.5) " l
(Lie(G)*/Ad*G)~

such that the fiber x'l(@’) above a quasiorbit & cC Lie(G") can be identified
with a quotient of S, forany A€ .

The most subtle aspect of this result is to understand which quotient of §A
gives the fiber. This is closely related to the group G' mentioned above for
which the G-quasiorbit becomes an ordinary orbit. If the quasiorbit consists
of a single G-orbit, then the fiber is all of :S‘\/1 .

We can also use the notions just formulated to give the criterion of
Auslander-Kostant that a solvable group be type 1.

THEOREM 3.4.2.6 [AuKo]. The group G is type 1 if and only if
(i) all coadjoint quasiorbits consist of a single coadjoint orbit, equiva-
lently, the coadjoint orbits are locally closed, and
(ii) for every 4, S, = Rl/Rg, i.e., the extension (3.4.2.3) is trivial.

3.4.3. The correspondence (3.4.2.5) is again described in the two ways
indicated by Theorem 3.3.1.3—Dby explicit construction of induced repre-
sentations, and by character formulas. However, both these constructions
must be more sophisticated. The character formula is similar to the formula
(3.4.1.2.1) for exponential groups, except one must restrict the functions f
to have support in a certain neighborhood of the identity, and the formula
does not distinguish between different elements in the fibers of the map x of
(3.4.2.5) [Puka3]. By considering integrals over quasiorbits rather than orbits,
Pukanszky [Puka3] has formulated an extension of the character formula to
the non-type I case.

Although polarizations no longer exist for an arbitrary A € Lie(G)*, there
is still a fairly direct construction of the representation associated to an or-
bit as a representation induced from a special class of representations of
subgroups. Here again the Heisenberg group, and somewhat more general
two-step nilpotent groups, play a key role.

One can preserve the geometric flavor that polarizations give to the con-
structions by considering complex polarizations. In essence, a complex po-
larization is a complex Lie subalgebra of Lie(G)., the complexification of
Lie(G) , which satisfies condition (3.3.1.1), where A now means the complex-
linear extension of A € Lie(G)" to Lie(G) . In order for a complex polariza-
tion in the above sense to be usable for constructing representations, it should
also satisfy some other technical conditions [Moor, p. 21; AuKe], which are
usually incorporated into the definition of complex polarization. One can
show that complex polarizations always exist. Indeed, Auslander-Kostant
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establish the existence of complex polarizations satisfying an additional con-
dition called positivity. The existence of positive complex polarizations is,
once again, essentially a phenomenon associated with the Heisenberg group
[AuKo, Moor].

Having a positive complex polarization for A € Lie(G)" allows one to
construct the representation associated to the coadjoint orbit through A on
a space of partially holomorphic sections of a complex line bundle. The ba-
sic example is the “Fock model” (cf. [Barg, Foll, Howe2, Sega], etc.), for
the representations of the Heisenberg group. More recently, several authors
[Carm, MoVe, Penn, Rose] have considered using nonpositive complex polar-
izations. This leads to the realization of representations on spaces of higher
cohomology of the associated line bundles, rather than sections (= degree
zero cohomology). Although these constructions using higher cohomology
are not necessary to construct the representations of our solvable G, they es-
tablish a parallel between solvable groups and semisimple groups, for which
realizations on cohomology are necessary (see §§3.5.5, 3.6.3, 3.6.5).

3.4.4. To conclude our discussion of solvable groups, we will give the basic
example showing that polarizations may not exist for all 1 € Lie(G)", and,
correspondingly, that representations of G may not be monomial (i.e., in-
duced from one-dimensional representations of subgroups). The reason not
all representations of solvable groups are monomial is related to the age-old
fact that not all real matrices are diagonalizable, or even triangularizable,
over the real numbers. The four-dimensional Lie algebra described in for-
mula (3.1.1.4) typifies the problem. It may be realized as a Lie algebra of
4 x 4 matrices:

0 x y 2z
_ )10 0 -t y|.
(3.4.4.1) g= 0t 0 —x it,x,y,z€R
00 0 O

The three-dimensional subalgebra of elements of g with ¢ = 0 is a Heisen-
berg Lie algebra. Denote it by h. The center of h consists of the elements
of h with x =0=y. Denote it by z(h). Then h/z(h) is abelian, and it is
easily seen that the adjoint action of g/h on h/z(h) is irreducible (over R—
when complexified it will of course break up into a sum of two eigenlines).
Consider any A in g* whose restriction to z(h) is nonzero. Simple compu-
tations show that the coadjoint orbit &, = & through 4 is two-dimensional.
Thus the isotropy subalgebra r, of 4 is also two-dimensional, and any po-
larization of A must have dimension 3. However, the projection of &,
into h" is also two-dimensional (see (3.3.2.3)), hence dim(r,Nnh)=1,s0 r,
projects onto g/h. Since g/h acts irreducibly on h/z(h), there are no three-
dimensional subalgebras of g containing r,. So 4 has no polarizations.
On the other hand, the calculations of §3.1.1 produce a representation
of g, acting on the same space as the canonical representation of h, de-
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scribed by the Stone-von Neumann Theorem (Theorem 3.3.2.4). Using this
extension of representations from h to g, one can verify a one-to-one corre-
spondence between orbits and representations for the simply-connected group
G associated to g. Similar, somewhat more general, constructions involving
Heisenberg-like groups suffice to construct factor representations correspond-
ing to arbitrary primitive ideals of C*(G) for general solvable groups G .

3.5. Compact groups. The representation theory of compact Lie groups is
equivalent, via the process of differentiating a representation (see §A.1.13),
to the representation theory of complex semisimple (actually, reductive) Lie
algebras. The bare essence of this is Cartan’s theory of the highest weight,
and is a key chapter in his foundational work on Lie theory [Crtn2]. (For
an interesting account of some history of this, see [Hawk1].) Weyl [Weyll,
PeWe], provided the analytic apparatus to make the connection between the
two theories, and provided important supplements (complete reducibility,
character formula). Harish-Chandra [HaCh8] made a connection with the
orbit method by providing an orbital interpretation of the Weyl character
formula. It is interesting that this work, which is a key to Harish-Chandra’s
later construction of the discrete series for noncompact semisimple groups,
precedes Kirillov’s [Kiri] by several years. The other aspect of the orbit
method, construction of representations via polarizations, is provided by the
Borel-Weil-Bott Theorem [Bott, Warn, Voga 1], which is also a development
of the 1950s. It too provided important guidance to the noncompact case.
In the sections below, we will review these developments more closely.

3.5.1. To start, let us review the representations of sl, , the unique simple
Lie algebra over C of minimal dimension, namely three. This is a simple and
attractive topic, with numerous applications, both within Lie theory proper
(cf. §2.8) and in many other parts of mathematics (cf. [Langl, HoTa, Howel,
§4(b); Proc], etc.) and physics (cf. [BiLol, 2, Hame, Jone, Shan], etc.).

Recall (see formulas (2.8.1)) that sl, has a basis £, e, e, satisfying the
commutation relations

(3.5.1.1) [h,eS]=+2", [e*,e ]1=h

REMARK. We note that the compact group whose complexified Lie algebra
is sl, is SU,, the special unitary group in two variables. A basis for su, is
provided by the famous Pauli spin matrices [Shan]

o1 [0 - [t oo
%=t o) YT o) %Tlo -1

The basis 4, e= of sl, is expressed in terms of the spin matrices as follows:
+ . - .
h=0,, e =j(0, +io), e = 3(0, —io).

The passage from SU, to su, to sl, is typical of the flexibility permitted
by Lie theory.
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The first basic fact about representations of sl, stems directly from the first
of these relations. Suppose we have a triple of operators 4, e~ on a vector
space V', and suppose £, et satisfy the commutation relations (3.5.1.1).
Suppose v is an eigenvector for 4, with eigenvector A:

(3.5.1.2) h(v) = Av.

We compute

(3.5.1.3) het () = ([h, e 1+ e h)(v) = 2¢" (v) + " (Av)
= (A+2)e" (v).

Thus e*(v) is again an eigenvector for /4, with eigenvalue A + 2, the
eigenvalue of v plus two. A similar computation shows e (v) is also an
h-eigenvector, with eigenvalue A — 2. Thus the effect of e* is to shift the
eigenspaces of /4 to higher eigenvalues; e~ shifts the A-eigenspaces toward
lower eigenvalues. This phenomenon is commonly described by calling e* a
raising operator and e~ a lowering operator. We may summarize the above
computation as follows.

LEmMMA 3.5.1.4. If V isa module for sl,, and V, CV is the A-eigenspace
Jor h, then the sum Y, , V, .. of h-eigenspaces is invariant under sl,.

More precisely, we have
+

e (Vi) € Vipagesr)

The above discussion shows that the product e e* preserves h-eigen-
spaces. For a sharper understanding of the structure of representations of
sl, , we investigate the structure of the operator e e* (or e'e” ;but e'e” =
e et +h).

To analyze e~ e’ we consider the Casimir operator
(3.5.1.5) & = "+ 2 e +e et = B +2h+4e et =h —2h+4e’e.

A straightforward computation shows that # commutes with all of sl, .
Thus % is in the center of the universal enveloping algebra of sl, . In fact,
it generates the center (cf. [Langl, Hump], etc.).

Since & commutes with sl,, its eigenspaces will be invariant under s, .
If V' consists of a single eigenspace for & , we will say the action of sl, on
V is quasisimple. Clearly all finite-dimensional irreducible representations
are quasisimple by Schur’s Lemma (cf. [HeRo, Lang3, Jaco2, Knap2] etc.).

Suppose the action of sl, on ¥V is quasisimple, so that & actson V' by
a scalar, which we will denote by 4. Again let V; be the A-eigenspace for
h. Then if v € V], equation (3.5.1.5) says

(3.5.1.6) e e (w)=tu—-2" -2, e'e (v)=iu-A +24)(v).

Thus, if V is quasisimple, the operator e e” acts as a scalar on each Vi,
and this scalar will be nonzero unless we have the quadratic relation

(3.5.1.7a) u+1=@GA+1)>%
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Similarly, ete” acts as a scalar, which is nonzero unless
(3.5.1.7b) p+1=GA-1>%

Note that (3.5.1.7a) becomes (3.1.5.7b) under the translation 4 — A+ 2.
These equations imply that in a sum )7, ., V)., , there are at most two
values of k£ for which either of the maps

e :V

w2k =V

+ .
e V=V, A+2k

A+2k+2°

fails to be an isomorphism.

Now suppose V is irreducible and finite dimensional. Then necessarily
V = Y kez Viior for some fixed 4, and clearly V, , = {0} for k large
enough. By replacing 4 by A+ 2k for appropriate k, we can assume V, #
{0} but V,,, = {0} for k > 0. Choose v, € V;, and set v, = (e”) v;.
Then we have the formulas .
(3.5.1.8) e W)=v,, €v=jd-j+lu,_,.
The first formula amounts to the definition of v IB and the second follows
from formulas (3.5.1.6). Since V' is finite dimensional, we must have e (v;)

= 0 for some j. Then also e+e'(vj) = e+(vj+1) = 0. From the second
of formulas (3.5.1.8), we see that necessarily j = A. Hence A must be a
nonnegative integer. We then further see that formulas (3.5.1.8) define a
unique sl,-module structure on the span of the v Ir 0 < j < A. This span
must thus be all of V. We conclude dim V' =A+1, and that the v;’s are a
basis for V. The following result summarizes our analysis.

ProprosITION 3.5.1.9. For each positive integer n, there is up to isomor-
phism a unique irreducible representation of sl, of dimension n. The space
of this representation allows a basis {v I 0 < j < n—1} with respect to which
the action of s\, is described by (3.5.1.8), with A = n — 1. In particular, the
eigenvalues of h are

{m:—(n-1)<m<n-1,m=n-1(mod2)}
and these eigenvalues all have multiplicity one.

ReMARK. The above arguments can easily be adapted to describe all irre-
ducible representations, finite- or infinite-dimensional, of the group SL,(R)
(cf. [Bargl, Langl, HoTa], etc.).

3.5.2. The very precise picture presented by Proposition 3.5.1.9 has an
analog for a general (semi-) simple complex Lie algebra g. The basic results
are due to Cartan [Crtn2] but understanding of the structure behind them has
been refined considerably since 1913. We will give a fairly modern account,
based roughly on [HaChl, Jacol, Hump, BGG1-3].

To set the mood for this construction, consider the following description
of the finite-dimensional representations of sl,. If V' is an sl,-module and
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v eV, call v a highest weight vector if e*(v) = 0 and h(v) = Av for
some number A. The eigenvalue of A is then called a highest weight. The
vector v, of the basis v; in (3.5.1.8) is a highest weight vector with highest
weight 4. An sl,-module which is generated by a highest weight vector is
called a highest weight module. Tt is easy to see that if we have a vector space
V(A) with basis {v I 0 < j < oo}, and we define an action of sl, on V(1)
by formulas (3.5.1.8), then we obtain a highest weight module, with v, a
highest weight vector of weight A. Further, an easy argument, again based
on formulas (3.5.1.6), shows V(1) is the universal highest weight module
with highest weight A in the sense that if U(A) is any highest weight with
highest weight A, there is a surjective sl,-module morphism from V(1) to
U).

We can do this for any number A. Typically V' (4) isirreducible. However,
if A is a nonnegative integer, then the quantity j(A — j+ 1) will be zero not
only for j =0, but also when j =4+ 1. In this case, v, , will be a highest
weight vector, with highest weight —A — 2. Thus, when A is a nonnegative
integer, the module V(—A — 2) is a submodule of V'(4). One sees that the
quotient V'(1)/V (—4—2) is the finite-dimensional irreducible representation
of dimension A + 1. Another way of saying this is to observe that we have
an exact sequence

(3.5.2.1) 0= V(=A=2) = V() — F(A) — 0,

where F(A) is the finite-dimensional irreducible representation with highest
weight 4.

3.5.3. The description (3.5.2.1) of the finite-dimensional irreducible rep-
resentation of sl, has a generalization to all complex semisimple (finite-
dimensional) Lie algebras [Jacol, Hump, BGG1-3]. We will describe it. Let
g be a complex semisimple Lie algebra, and let a C g be a Cartan subalgebra.
Consider the decomposition (2.8.6) of g into root spaces for a:

g=a0) g.

a€X

Here X denotes the set of roots of a acting on g. As we remarked in §2.8,
if g is aroot space, thensois g__,and g, and g_, together generate an
algebra s isomorphicto sl,. Let #_ in s Na be the element corresponding
to the element / as in formulas (2.8.1). In other words, the element 74 is
determined by the conditions

(3.5.3.1) h,€ans,, alh )=2.

a

The element £ is frequently called a coroot.

It follows from the description in Proposition 3.5.1.9 of the representations
of sl, that B(h,) € Z for all roots . Thus if we denote by ag the real
span of the A, for all roots «, we see that the roots take real values on ap .
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Choose any h, € ap such that a(h;) #0 forall a € . Set
(3532) X ={a€Z:ahy) >0}, I =-I'={a:a(h)<O0}.

The sets T© and X~ are called, respectively, the positive roots and the neg-
ative roots. Further, set

(3.5.3.3) n"=Yg, n=) g.

a€x*t a€X”

Then n* and n~ are maximal nilpotent Lie subalgebras of g, and we have
the decomposition

(3.5.3.4) g=aon on .
Further, the algebras
(3.5.3.5) b"=a®n’, b =aon

are maximal solvable subalgebras of g. They are called Borel subalgebras.
The commutator subalgebra of b* is n*.

Suppose we have a representation of g on a vector space V. Since the
algebra a is commutative, it is possible to have simultaneous eigenvectors
for a in V. Suppose v is such a vector, i.e., suppose that for all a in a
we have a(v) = A(a)v for some number A(a). It is trivial to check that the
function

(3.5.3.6) A:a— Aa)

depends linearly on a, so that A belongs to a*. The linear functional A
is called the weight of v, and v is called a weight vector of weight A. The
span of all weight vectors of weight A is called the A weight space. Suppose
v is not just an eigenvector for a, but for all of b* ; that is, suppose v is
a weight vector for a, and additionally n(v) = 0 for n € n*. Then v is
called a highest weight vector, and the weight A of v is a highest weight. If
V is generated as a g-module by a highest weight vector, then V' is called a
highest weight module. Just as for sl, we can prove

LEMMA 3.5.3.7. Every finite-dimensional irreducible representation of g
is a highest weight module. More precisely, a finite-dimensional irreducible
representation contains a unique highest weight vector.

Proor. Let V be the space of the representation. Since V is irreducible,
to show it is a highest weight module it suffices to show it contains a highest
weight vector. This is done in completely elementary fashion just as for sl, .
If h, € a is the element used to construct nt , observe that if n € g, C nt,
then n transforms an eigenvector for /4, of eigenvalue 4 into an eigenvector
of eigenvalue A + a(h,), which has larger real part than does 4. Hence if
A has maximal real part among the eigenvalues of A, acting on V', then
any eigenvector for A, with eigenvalue 4 must be annihilated by n* . Since
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a is commutative and V is finite dimensional, we may find within the A-
eigenspace for 4, a weight vector for a. It is necessarily then a highest
weight vector.

To show there is only one highest weight vector, we appeal to the Poincaré-
Birkhoff-Witt Theorem (cf. [Jacol, Serr2], etc.). From equations (3.5.3.4)
and (3.5.3.5) we see that

g=b"@on .
Let 7Z(g) be the universal enveloping algebra of g (cf. [Jacol, Serr2], etc.),
and similarly for b*, n~ . Multiplication inside %(g) induces a linear map-
ping
(3.5.3.8) Ym ) UMb - %(g).

The PBW Theorem tells us that the mapping (3.5.3.8) is a linear isomor-
phism.

Let v € V be a highest weight vector. Denote by Cv the line through v .
Then using PBW we find

% (g)(Cv) =% (n" )% (b")(Cv) = % (n™)(Cv).

For each a € X7, choose a nonzero element n, € g, . Then #(n") is
spanned by monomials in the 7_, i.e., by products CNECNRRES An easy
inductive calculation shows that, 1f v has weight 4, then n l---nak(v) is

also a weight vector, of weight A + Ei=1 o; . We note that since a(h,) < 0

for all @ in £, no sum Ei;l a; can be zero unless k = 0. Thus we have
the following result.

LEMMA 3.5.3.9. If V is a highest weight module with highest weight A,
then:

(i) V is a direct sum of its weight spaces;
(ii) all weights of V have the form A+ Y s~ n, o, where the n, are
nonnegative integers;, and
(iii) the A-weight space is one-dimensional, that is, it is Cv, where v is
the highest weight vector of weight A .

Now suppose V is an irreducible highest weight module, with highest
weight 4, and suppose V' contains a highest weight vector v, in addition
to the highest weight vector v of weight A. Then by Lemma 3.5.3.9(ii) and
(iii), the weight of v, is A+ .s- m a, with some of the m s positive. By
Lemma 3.5.3.9(ii) the g-module % (g)(v,) is the span of weight spaces with
weights A+ _s-(m, + n, )a, with the n’s nonnegative. It follows that
v cannot belong to #(g)(v,), contradicting the irreducibility of V. This
proves Lemma 3.5.3.7.

In fact, during the argument, we showed a more general fact about highest
weight modules, which we will state explicitly.
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CoROLLARY 3.5.3.10. Let V be a highest weight module, generated by
the highest weight vector v with highest weight A. Then

(1) V s irreducible if and only if V contains no other highest weight
vector, and

(i) V contains a unique maximal proper submodule U such that VU
is irreducible and nontrivial. (In particular, v ¢ U.) U is generated
by all highest weight vectors other than v .

Thus we have identified irreducible finite-dimensional representations as
members of a larger family of irreducible highest weight modules. We will
now proceed by describing this larger class, then identifying the subclass
consisting of finite-dimensional subrepresentations.

First, we show that, as for sl,, there is a highest weight module with
highest weight 4 for any A € a". Indeed, given A € a*, consider the left
ideal .2} in Z(g) generated by n* and by elements a—A(a) for a € a. Note
that A defines a character (a one-dimensional representation) of % (b*), and
that n* and the elements a — A(a) generate the kernel of the corresponding
homomorphism from % (b*) to C. Thus they generate a two-sided ideal A
of codimension one in % (b*), and <, is the left ideal in %/(g) generated
by # . It follows from PBW that .Z; = Z(n")_%, and that the natural map

(3.5.3.11) Zm )% - %)=
is a linear isomorphism.

CoOROLLARY 3.5.3.12. (a) The g-module
(3.5.3.13) V,=%(g)|-Z

is a highest weight module, with highest weight A, generated by the image v,
of 1, the identity element of % (g) .

(b) V, isfreeasa Z(n") module.

(c) Any highest weight module with highest weight A is a quotient of V.

(d) Consequently, for every weight A € a", there exists a unique irreducible
highest weight module M, with highest weight A .

The modules ¥, are usually called Verma modules [Hump, BGG3].

Thus we have an irreducible highest weight module M, for every 4 € a*.
It remains to decide when A, is finite dimensional. We can deduce some
restrictions on A from our knowledge of sl,. Suppose M, is finite dimen-
sional. For a positive root a € X', consider the copy s, of sl, generated by
g, - The highest weight vector v, of M, generates a highest weight module
for s_, and this highest weight module is necessarily finite dimensional. It
follows from §3.5.2 that A(k,) is a nonnegative integer. Let us say 4 € a
is integral if A(h,) is an integer for all a € . Let us say A € a" is domi-
nant if A(h,) > 0 for all a € X" . (This is equivalent to saying A is in the
positive or fundamental Weyl chamber, cf. §2.10.) Then, for A € a" to be
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the highest weight of an irreducible finite-dimensional representation of g,
we can say it must be dominant and integral. The main result of Cartan’s
highest weight theory is that these conditions on 4 suffice to guarantee M,
is finite dimensional.

THeorREM 3.5.3.14. The irreducible module M, of highest weight A is
finite dimensional if and only if A is dominant and integral.

REMARKS. (a) This theorem reminds us again of the strong control sl,
exerts over the phenomena of semisimple Lie algebras. This control is evident
even more in the proof of the theorem given below.

(b) The dominant integral A in a" clearly forms a semigroup under
addition—the intersection of a lattice with a cone. If M, and M, , are
irreducible highest weight modules with highest weight vectors v, , v 0 then
the tensor product v, ® v, will generate a highest weight module, of highest
weight A+ u, inside the tensor product module M, ® M, pE Hence, if M,, M u
are finite dimensional, so must M, . be. Thus the set of highest weights of
finite-dimensional representations is also a semigroup. To prove that all dom-
inant integral A define finite-dimensional highest weight modules, it suffices
to exhibit finite-dimensional A/, for a set of 4 which generate the semigroup
of dominant integral weights. This is essentially what Cartan did [Crtn2],
and in fact the procedure, though heavily computational for the exceptional
groups, is illuminating, and for the classical groups is quite elegant, involving
the exterior powers of the standard representations. From general structure
theory [Jacol, Hump] one can show that the dominant integral weights actu-
ally form a free semigroup on a unique set of rank(g) = dima generators.
The representations corresponding to these generators are called the funda-
mental representations of g. For g = sl , the fundamental representations
are just the natural action on the A’(C"), the exterior powers of C", for
1 < j < n-1. For orthogonal and symplectic Lie algebras, the fundamental
representations (except for the spin representations of the orthogonal alge-
bras [Arti, BeTu, Jaco2]) are also constructed fairly easily from the exterior
powers of the basic representation.

We will briefly sketch the approach of [HaChl] (see also [Jacol, Hump])
to showing that, if A is dominant integral, then M, is finite dimensional.
Consider the fundamental positive roots in * (cf. §2.12). Let a be a
fundamental positive root. From the general structure theory, we know that
p, > defined by

(3.5.3.15) p,=b" +g_,=n ekerads,,
where n?;l) = Y pest pra8p and kera = {h : a(h) = 0} C a, is a Lie

subalgebra of g. It is called a parabolic subalgebra. The subspace nE;) is an
ideal in p, . In particular, we have

(3.5.3.16) [nf ,s]Cn .
()’ "a e
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Consider the Verma module ¥, with highest weight vector v, . Suppose
that A(h,) is a nonnegative integer. Then formulas (3.5.1.8) show that if
e_, belongsto g_,, and e, belongs to g, the vector

_ A(ha)+1
y=e_" (

v,)

is annihilated by e, . Also, the commutation relations (3.5.3.16) imply that y
will be annihilated by n/, . Since n* = n, ®g, , it follows that y is a highest
weight vector, of weight A4 — (A(h,) + 1)a. It will generate a highest weight
submodule of V,. Since n~ acts freely on V), we see that y generates a
module isomorphic to Vl—(l(ha) +ha - In other words, under the hypothesis
that A(k,) is a nonnegative integer, we obtain an embedding of V;x—( A )+ 1)a
inV,.

If A is dominant integral, then we get an embedding of V:l—(l(ha) ta in
V, for every fundamental root o. This already suffices to show that A,
the irreducible quotient of ¥, must be finite dimensional. Indeed, for each
fundamental root o, M, will be a quotient of V,/ V/I—(/l(ha) ta = V(@) The
image in V,(a) of the highest weight vector v, generates a finite-dimensional
s, module. Since the adjoint action of g on #(g) is a sum of finite-
dimensional g-modules, hence s_-modules, it follows that any element of
Vi(a) = % (g)(v,) generates a finite-dimensional s -module. It follows that
S, = exps,, the group obtained by exponentiating s, acts on V(a). In
particular, the Weyl group reflection w, contained in S, acts on V(o). It
is easy to see this fact remains true in any quotient g-module of V(). In
particular, w,_ acts on M, . Since the w, generate the full Weyl group W
(cf. §2.9), we see that W acts on M.

Since W normalizes a, the effect of W on M, is to permute weight
spaces. Precisely, for 4 € a*, let M, denote the u weight space of M, .
Then for p € W, we have

(&)
(3.5.3.17) p(M;) =M,

where p(u) denotes the standard action of p on u as an element of a*.
Thus, in particular, one sees that the set of weights u for which M} # {0}
is invariant under W . Since also the weights of A/, being contained in
the weights of 7, are bounded above, as described by Lemma 3.5.3.9(ii),
it follows easily from the geometry of the action of W on a* that the set
of weights u for which M /{‘ # 0 must be bounded, hence finite in number.
Since each weight space of M, (indeed, of V,) is finite dimensional, we
conclude M, is finite dimensional.

Although the argument above gives us the desired finite dimensionality of
M, when A is dominant integral, it does not give us a very precise picture
of M, . A refinement of the above considerations yields a description of M,
analogous to (3.5.2.1) [BGG1-3, Dixm1].
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Let p denote the element of a* such that

(3.5.3.18) p(h,) =1
for each fundamental root «. Then we may write
(3.5.3.19) A=)+ Da=w (A+p)-p,

where again w, is the Weyl group reflection corresponding to the fundamen-
tal root «.

As we have noted, the Weyl group W is generated by the reflections w,, .
Let the length of p € W be the shortest product of the w_’s equaling p

[Hill, Bour]. Denote it by /(p). If
p=w,w w, [=1(p),

is a shortest possible product expressing p, then

@y

’
p "‘lp Q4 ay

has length / — 1. From a systematic study of the geometry of a root system
and its Weyl group, one can see that if A4 is dominant, then p'(,l)(hal) >0.
It follows by the argument given above that v, embeds in V;),(
The embedding is unique up to multiples.

By induction, we find that when A is dominant integral, we can embed
Vw(z +p)=p in V, for every element w of the Weyl group W . It is shown in
[BGG2] that these embeddings can be organized into an exact sequence, as
follows. For k > 0, set

(k)
(3.5.3.20) V27 = 3" Vatin—p:
l(w)=k

(A+p)—p Atp)—p°

We have seen that whenever w has length Kk — 1 and w, w has length k,
thefe is 'an embedd'lng .unw(l o)—p = v, (o) defined up to multlples.. By
taking linear combinations of these embeddings, we can construct mappings
from Vl(k) to Vl(k = If we choose these mappings correctly, we will get an
exact sequence

35321) 0K oy Vo SvP LY Sy oM o,

where m is the largest possible length of an element of W . In fact, m =
dimn™ . In the case of sl,, this exact sequence is simply the sequence
(3.5.2.1).

REMARKS. (a) The exact sequence (3.5.3.21) implies the Weyl character
formula (cf. §3.5.4) by means of the Euler-Poincaré principle. The alternating
sum of the highest weights of the Vw( 24p)—p provides the numerator for the

formula, while the character of ¥, (=~ n~ as an a-module) provides the
celebrated “Weyl denominator.”

(b) The multiplicities of the weight spaces of }, ~ n are easily seen by
PBW to be given by the Kostant partition function [KostS, Jacol, Hump],
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P(2) = # of ways of expressing A as an integral linear combination of neg-
ative roots. Given this observation, Kostant’s multiplicity formula [Kost5,
Jacol, Hump] for the multiplicities of weights of finite-dimensional repre-
sentations follows immediately from (3.5.3.21). Indeed, Kostant’s formula
is basically a variant way of expressing the Weyl character formula, so when
we can deduce one, we should be able to deduce the other.

(c) Also from the exact sequence (3.5.3.21), one can fairly directly deduce
Kostant’s description [Kost4, Warn, Knapl, Voga2, Arib] of the Lie algebra
cohomology groups H*(n*, M,)-cohomology of n* with coefficients in the
module M, . We will discuss this in §3.5.5.

(d) The “p-shift” seen in the highest weights of the ¥, (Ap)=p * and in the
Weyl character formula, and elsewhere is in some sense explained by the
Harish-Chandra homomorphism (cf. Theorem 3.5.5.23)).

3.5.4. WEYL’S CHARACTER FORMULA. In [Weyll], (see also [Weyl2, Wall2,
Knap]), Hermann Weyl gave a radically different approach to the representa-
tion theory of complex semisimple Lie algebras through the equivalent theory
of representations of compact semisimple groups. (Part of his achievement
was to make explicit the equivalence. This is the origin of the celebrated “uni-
tary trick.”) This approach yields not only the classification of irreducible
representations but also a formula for their characters, the Weyl character
formula. (We note that the Weyl character formula for U, (and also for
O,,) is due to Schur [Schu].)

We will illustrate the method with the unitary group U, in order not. to
become too involved with the notation necessary for the general case.

We think of U, as a set of n x n matrices. The subgroup (a Cartan
subgroup)

(3.5.4.1) A= 1z;€C, |z =1

0 =z
of unitary diagonal matrices is abelian and isomorphic to T", the n-fold
power of T, the unit circle in C. The unitary characters (irreducible repre-
sentations) of A define a group isomorphic to Z". They may be explicitly
described by the formula

n
(3.5.4.2) @ =] 2",
n=1
where m = (m,, m,, ..., m,) is an n-tuple of integers, and
a=a(z)=diag(z,, z,, ..., Z,)

is the diagonal matrix with diagonal entries z; € T. The characters x, ()
form an orthonormal basis for LZ(A) with respect to Haar measure on A4
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(assuming, as we will, that the Haar measure is normalized so that the total
volume of A4 is 1).

Spectral theory for unitary matrices (cf. [Lang3, Stra], etc.) tells us that
every unitary matrix is conjugate to a diagonal matrix. Thus the map
(3.5.4.3) r:4xU,—-U, T(a,g) =gag '
is surjective. It is clear that I'(a, gb) =I'(a, g) for b € A. Hence the map
I" actually factors to N

r-4x(U,/4)-1U,.
The factored map T is generically finite-to-one. On the open dense set of
matrices with » distinct eigenvalues, it is an n!-to-one covering map: two
diagonal matrices define the same conjugacy class in U, if and only if one
can be turned into the other by permuting its diagonal entries. One can think
of I" as defining a system of “polar coordinates” on U, .

Let dg denote Haar measure on U, . Since 7 is finite-to-one, up to sets
of measure zero we can use it to lift dg up to 4 x (U,/4). Thus we can

find a unique measure du(a, &) on 4x(U,/A) such that the set where T is

singular has measure zero and such that on the set where T is finite-to-one,
we have the formula

Gsad [ japda=[ | ¥ s |de
Ax(U,/A) U, =
x€l'™ ' (g)
for f a function on 4 x (U, /4).

The coset space U, /A4 also possesses a left-invariant measure dg. Since
Haar measure on U, is also conjugation invariant, we see du must be a
product measure of the form

du(a, &) =dv(a)dg.
Since we are in a context of smooth manifolds and smooth maps, we can
easily believe that dv is absolutely continuous with respect to Haar measure
da on A:
dv(a) =v(a) da
for an appropriate function v on 4.

If we think of the map I" as partitioning U, into a family, parametrized
(redundantly) by A4, of fibers which are copies of U, /4, then v(a) tells us
the volume of the fiber through a. This volume can be computed, up to
a constant factor, as the determinant of an appropriate Jacobian mapping,
which can be identified with the action (1-—Ad a)| .+ Of a acting by conjuga-

tion on a* , the orthogonal complement to a in u, . (Note that, concretely,
a® is the space of skew-adjoint n x n matrices with zeros on the diagonal.)
It is easy to compute that [Wall2, Knap2, HoTa]

v(a) = cldet(l —ada,.)|=c [[ Iz -z’

1<i<j<n
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for an appropriate constant ¢. Here the z, are the diagonal entries of a, as
in formula (3.5.4.2). We will write

(3.5.4.5) D)= ][] (z-z)).

1<i<j<n
(The function D is known as the discriminant; in our context it will play
the role of the denominator in Weyl’s character formula for U, .) Then our
formula for v(a) can be written as

(3.5.4.6) v(a) = cD(a)D(a).

Here D(a) denotes the complex conjugate of D(a).

In formula (3.5.4.4), let us take the function f to be a pull-back from U,
by I': N

fla, &) =¢(T(a, &) = $(2az™)
for some function ¢ on U, . Taking into account the discussion above, we
see
#w) [ dordg= [ g(gaywia)dads,
U, AX(U,/A)

where W ~ S here indicates the group of permutations—the Weyl group
of U,. Suppose further that ¢ is invariant under conjugation. Then our
formula simplifies to become

(3.5.4.7) /U Hle)dg = 7 /A $(a)D(a)D(a) da.

This formula has a nice interpretation in terms of L>-spaces. Let 9> 0,
be two conjugation invariant functions. Setting ¢ = 9,9, gives

(3.5.4.8) /U ()78 e = 57 /A (¢,D)(@)(9,D)(@) da.

Let Lz(Un)AdU" be the space of conjugation-invariant L*-functions on

U, . The restriction of ¢ € L2(Un)AdU" to A will be invariant under the
Weyl group W =S, of permutations of the diagonal coordinates. On the
other hand, the discriminant function D is easily seen to be completely
antisymmetric in the z;; more precisely we have

(3.5.4.9) D(p(a)) = sgn(p)D(a), acAd,pes,,

where sgn: S, — *1 is the sign character: sgn(p) is 1 if p is an even
permutation, and sgn(p) is —1 if p is odd. Thus the mapping

(3.5.4.10) M, : 9 — Dy

will take W-invariant or “symmetric” functions to “skew-symmetric” func-
tions, i.e., functions transforming under W by the sign character. Let
L*(4)" " denote the subspace of skew-symmetric functions in L*(A). Let

(3.5.4.11) res, : f — fiu
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denote the restriction map from functions on U, to functions on 4. With
this notation, we may express formula (3.5.4.8) as follows:

(3.5.4.12) The map M;ores, : LU "% o LX) is,up to a
scalar factor, a unitary isomorphism.

The discriminant function D is distinguished among all skew-symmetric
functions by the property that it divides any one of them. More precisely, if
f is a smooth skew-symmetric function on A, then we can write f = D¢
and the quotient ¢, which will obviously be a symmetric function, will also
be smooth. To see this, it suffices to consider two variables at a time: to
show, say, that if f changes sign when z, and z, are interchanged, then f
is divisible by z, — z,. This can be done, for example, in terms of Fourier
series. The basic formula is

z—zy, =(z, - 22)(21'_1 + z;'_zz2 + 4 z;_I)
This argument shows that, in fact, if f has a finite Fourier series, then ¢
will also. '

One way to create skew-symmetric functions is to take an arbitrary func-
tion f on A and skew-symmetrize it. Thus given [, we define

(3.5.4.13) skew(f)(a) = ) _ sen(p)f(p(a)).
DEW

It is simple to check that skew(f) is skew-symmetric, and if f is already
skew-symmetric, then skew(f)=#(W)f.

Consider skew(y,,) for some character x,, of A4, asin formula (3.5.4.2).
The Weyl group also acts naturally on characters, by permuting the coordi-
nates of the n-tuple m labeling y,, . Specifically we have

w(m) = (mw_l(l), My =19y +ee s mw_l(n))
and
From these formulas, it is clear that
(3.5.4.14) skew(xw(m)) = sgn(w) skew(x,,)-
Thus in constructing the functions skew(y,,) , we need only consider m mod-
ulo the action of W . Thus let us define
(3.5.4.15) AV =g, m >my>->m}.

It is easy to check that any character can be transformed by some element of
W to a unique element of 4" . Thus we need only consider skew( X, for
.t
Xy 10 A
We can also see from equation (3.5.4.14) that if any two coordinates of
m are equal, then skew(x,,) = 0. Thus in fact it is sufficient to consider
skew(y,,) for x, belonging to

(3.5.4.16) A ={x, m >my> - >m}.
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Using elementary facts about Fourier series, we can see

The functions #(W)™"/? skew(y,,), m € 4™, define an or-

3.54.17
( ) thonormal basis for L*(4)" %",

Let us remark that A™" has a minimal element. That is, if we define

(3.5.4.18) p=(n-1,n-2,...,1,0)
then
(3.5.4.19) /TH=xp/f+={xpxm=xp+m:xme/f+}.

Since the functions skew(y,,) span the skew-symmetric functions, we must
be able to express D (cf. (3.5.4.5)) as a linear combination of the skew(y,,) -
In fact, by considering which characters could possibly occur in the expansion
of the product defining D, we can conclude

(3.5.4.20) D= skew(xp)

with p as in (3.5.4.18). This identity, which is equivalent to the evaluation
of the Vandermond determinant

1z zz z;'_i
1 z, z5 .. zZ37
2 4 2 n(n—1)/2
det| = II (-2z)=(1 D,
: s : | 1<i<j<n
ne
1z, z, - z,

is one of the most fertile in mathematics. In [Macd2], I. G. Macdonald
discovered a class of identities attached to afine root systems that turned out
to be analogs of (3.5.4.20) for affine Kac-Moody Lie algebras [Kacl]. The
developments of this theme are still proceeding at a rapid pace (cf. [KaPe,
Lepol, 2, LeMi, Macd3, Gust, Heck 1-3, Morr, HeOp, Opdal-3, Zeil], etc.).

Before continuing, let us note one consequence of the identity (3.5.4.20):
it allows us to explicitly determine the constant ¢ in formulas (3.5.4.7) and
(3.5.4.8). Indeed, formula (3.5.4.20) tells us that D is the sum of n! charac-
ters of A, with coefficients +1. Since characters are orthonormal in LZ(A) ,
we conclude

/ \D|*(a) da = n! = #(W).
A

Using this and ¢ = 1, the constant function, in (3.5.4.7) tells us that ¢ = 1.
Hence formula (3.5.4.8) reads simply

(3.5.4.21) / 0,(8)0(8)ds = 5575 [ (0D, D@ da,

for ¢,, 0, € L’ , )AdU
Now turn to consideration of the irreducible characters of U, . These are

the functions

(3.5.4.22) ch,(g) = trace p(g),
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where p: U, — GL(V) is an irreducible representation of U, on a finite-
dimensional vector space V' . Evidently a similar definition can be made for
any compact group. The significance of the characters for the representation
theory of compact groups is summarized by the Peter-Weyl Theorem (cf.
[HeRo, Knap2, PeWe, Loom], etc.). To state it we need some notation.

Let G be a compact group. Let dg be Haar measure on G, normalized
so that G has total mass equal to 1. Let L2(G) be the L2-space of G
with respect to dg, and let L2(G)AdG denote the subspace of conjugation-
invariant functions.

We can convolve elements of L’ (G) (cf. §A.1.12). It is easy to check,
for any locally compact group, that the convolution of two L>-functions is
continuous. Since we have G compact, continuous functions are L? , SO L?
is an algebra under convolution. In fact,

1y % fyll, = /G J‘](g)(Lgfz)dg“z < /G 48l 1)1, dg
AN TARITARIAS

Here, || f]| , denotes the L -norm of a function on G. The last inequality
)A€ is the

follows since G has total mass 1. It is easy to check that L2(G
center of L’ (G).

Let V be a finite-dimensional vector space, and p : G — GL(V') a repre-
sentation of G on V. We can define the character of p, ch . by formula
(3.5.4.22).

Recall that G denotes the set of irreducible unitary representations of G .

THEOREM 3.5.4.23 (Peter-Weyl). Let G be a compact group.

(a) Every continuous irreducible representation o of G is finite dimensional
and unitary (i.e., given irreducible o acting on V, there is a G-invariant
hermitian inner product on V).

(b) Every irreducible representation of G can be realized as a subrepresen-
tation of the left regular representation on Lz(G) .

(c) The irreducible characters ch_, o € G, constitute an orthonormal basis
for L*(GY*°.

(d) The functions e, = (dimao)ch_ , o € G, are idempotents for the con-
volution algebra structure on L? (G). They are precisely the minimal central
idempotents in L* (G) Thus we have a decomposition

Ze « L*(G) = Ze «L*(G) xe,

aeG UEG

=Za®a*

of L*(G) into mutually orthogonal, minimal, two-sided ideals. Each ideal
e, * LZ(G) * e Is isomorphic to a matrix algebra of rank dimo, and as a
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G x G module under left and right translation, is isomorphic to 6 @ 6", where
¢ indicates the contragredient of o .

REMARKS. (i) Part (b) is proved by considering matrix coefficients (see
§A.1.11). Given part (b), part (a) is an application of the theory of integral
operators and the spectral theorem for compact selfadjoint operators [Lang?2,
RiNa] (or for selfadjoint algebras of compact operators). Parts (c) and (d) are
analogs of the Schur orthogonality relations for finite groups, and are proved
in essentially the same way, via Schur’s Lemma [HeRo, Knap2, Lang3].

(ii) To quote the Peter-Weyl Theorem in the derivation of the Weyl char-
acter formula is unhistorical as [PeWe] appeared several years after [Weyl1].
Howeyver, it is natural.

With these preparations, we are ready to state
(3.5.4.24) Weyl character formula for U,: The characters of the irre-
ducible representations of U, are the functions

skew(xm+p) 3 skew(xm+p)
skew(x,) - D ’
Here skew(y,,) is defined in formula (3.5.4.13).
ProoF. Indeed, we know thatif ¢ is a representation of U, , then 94 will

be a direct sum of irreducible representations, i.e., characters, of 4. Thus
(ch,) = ch(aM) will be a positive integer linear combination of elements of

meAd”.

A . Also, of course, ch, is conjugation invariant, so ch o is symmetric. Thus
the product D(cha]A) will be an integer linear combination of characters of
A, and will be skew-symmetric. It follows easily that D(ch "|A) is an integer

linear combination of the functions skew(y, ), me 4.

On the other hand, we know from Schur orthogonality, Theorem 3.5.4.23
(c), that the norm of ch  in LZ(Un) is 1. It follows from (3.5.4.21) that the

norm of D(ch, ) in L*(4) is #(W)"?. Combining this with the previous
paragraph forces D(chaM) to be *skew(y,,) for a single x,, . The sign can
be checked by inspecting the coefficient of x,, _ ) in skew(y,,)/ skew(x p) ,

and seeing it is positive (in fact, it is 1). The fact that all x, in AT
are needed to express the characters follows from the completeness part of
Theorem 3.5.4.23(c).

REMARKS. (a) To me, this proof is simply magical. If you attempt to ana-
lyze it, it dissolves into a few simple calculations and some general nonsense-
airy nothing.

(b) One can recognize the same objects appearing here as in §3.5.3. The
set AT is the collection of dominant integral weights, p is the half-sum of
the positive roots, the alternating sum in (3.5.4.24) mirrors the Euler char-
acteristic of the exact sequence (3.5.3.21), there is the same phenomenon of
shifting by p, etc.
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(c) A remarkable feature of this proof is that it simply identifies the ir-
reducible characters. What the representations associated with these charac-
ters might be is, for the purposes of this argument, irrelevant and ignored.
Of course, what the modules are was known well before this argument was
given, from the highest weight theory described in §3.5.3. However, for non-
compact groups the situation was reversed: Harish-Chandra [HaCh19, 20]
gave a construction of discrete series characters using methods extending
those explained in §3.5.6, well before these modules were constructed [OkOz,
Schm1-3, Hott, Partl, Wall4]. Further, the early explicit constructions of dis-
crete series modules all depended on knowing the character. It was not until
[AtSc, FlJe, Wall2] that the existence of discrete series representations was
established independently of character theory.

(d) Of course, the representation with character skew(y,,, ») / skew(x p) is
the representation with highest weight y, .

(e) By a ’'Hopital’s Rule argument as a € A approaches the identity, one
obtains from the character formula a formula for dimo (cf. [Weyl2, Knap2,
Jacol], etc.).

(f) In the case of U, , the character formula is due to I. Schur, who used
rather different arguments [Schu].

3.5.5. The highest weight theory (cf. Theorem 3.5.3.14) and the Weyl char-
acter formula (3.5.4.24) are the main constituents of our understanding of
representations of compact Lie groups. Both were in place by the mid-1920s,
well before the invention of the orbit method. However, both have been given
interpretations consistent with the orbit picture. Even these interpretations,
which date mainly from the 1950s, preceded the formulation of the orbit
picture, and they provided guidance for the development of the representa-
tion theory of noncompact semisimple groups. In this section we will discuss
the realization of representations by means of cohomology of line bundles
over flag varieties. This is often called the Borel-Weil theory, but its full
articulation is due to Borel-Weil [Serr3], Bott [Bott], and Kostant [Kost4].

An essential aspect of the BWBK theory is the double interpretation of
flag manifolds as homogeneous spaces, either for compact groups, or for
their complexifications. We will describe this in general terms and illustrate
it for the special unitary group SU, .

We will discuss the BWBK theory for a connected, simply-connected,
semisimple compact Lie group K. This is the essential case; allowing K
to be disconnected, non-simply-connected, or to be nonsemisimple (i.e., to
have a positive-dimensional center) has mainly nuisance value: it complicates
the discussion without requiring any essential ideas. It is for this reason that
we use SU, rather than U, for our example.

Let K be a connected, simply-connected, semisimple compact Lie group
with Lie algebra k, let g = k. ~ k ® C be the complexification of k,
and let G be the simply-connected Lie group with Lie algebra g. Since g
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is complex, G likewise will carry a complex structure. We may think of
K as the subgroup of G whose Lie algebra is k C g. If K = SU,_, then
G =S8SL,(C). Let T C K be a maximal abelian subgroup (a Cartan subgroup,
also called a maximal torus since it is a product of circles). This notation
is inconsistent with that of the preceding and following sections; but here
we have another use for 4. Let t be the Lie algebra of 7', a = t its
complexification. For K = SU, , we may take a to be the complex diagonal
matrices of trace zero, and t the pure imaginary ones. The algebra a is a
Cartan subalgebra of g, and we have the root space decomposition of g, as
described in formula (2.8.6). We may make a choice of positive roots, and
the corresponding Borel subalgebra b™ (cf. formulas (3.5.3.2)—(3.5.3.5)).
Let B C G be the connected subgroup whose Lie algebra is b* . Since b*
is its own normalizer in g, B is necessarily closed. For K = SU, , we may
take B to be the complex upper triangular matrices of determinant 1.

The Iwasawa decomposition [Knap2, Wall2] and §A.2.3.5 for G says that

(3.5.5.1a) G=KB, BnK=T.

For G = SL,(C), this amounts to the Gram-Schmidt orthonormalization
procedure in C”. We also have the factorization

(3.5.5.1b) B=AN",

where 4 and N* are the connected subgroups of G whose Lie algebras are
a and n" (cf. formula (3.5.3.5)). The group A4 is the complexification of
T; it is called a Cartan subgroup or maximal torus of G . Every character
x of T extends in a unique way to a holomorphic character (i.e., a group
homomorphism which is holomorphic with respect to the complex structures
on 4 and C™):

(3.5.5.2) x:4-C".

The complexification process described above also establishes, by a pro-
cess of differentiation and analytic continuation just as discussed above for
T,t,a,and A, bijections among the following sets:

{irreducible unitary representations of K}

~ {irreducible complex representations of k}

< {irreducible complex linear representations of g}

« {irreducible holomorphic representations of G}.
By a complex linear representation of g we mean a complex linear homo-
morphism ¢ : g — End(V) of g into the endomorphisms of some complex
vector space V. Complex linearity of ¢ guarantees that ¢ is determined by
its restriction to the real form k of g. Similarly, a holomorphic representa-

tion ¢ : G — GL(V) is a representation which is holomorphic as a mapping
of complex manifolds. It is easy to check that the representation ¢ of G
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is holomorphic if and only if the associated representation of g is complex
linear.

Given a character y of 7, consider the induced representation
CF(T\K; x) (cf. §A.1.14). (Since K is compact, the subscript ¢ in C>” is
superfluous.) There is a geometric interpretation of C™(T\K; x) in terms
of line bundles [FeDo, Huse, GrHa]; we will review it. The quotient mapping

K
(3.5.5.3) 1

T\K
can be thought of as a principal fiber bundle [Huse] with fiber 7. Given
a representation p of T on a space V', we can form the associated vector
bundle V x ) K. If p =y is one-dimensional, then we simply have a line
bundle. Comparison of the definition of V x p K with the definition of
induced representation shows that the functions in C*(7\K; p) may be
thought of as sections of the vector bundle V' x ) K.
The decomposition (3.5.5.1a) shows that

(3.5.5.4) T\K ~ B\G.

Since B\G, being a quotient space of complex groups, is a complex manifold,
we may use identification (3.5.5.4) to think of T\K as a complex manifold.
In the case G = SL,(C), it is the set of all “complete flags” in C": se-
quences of nested spaces {D} =V, CV, C---CV, = C", with dim VJ =j.
In general, T\K is called the (complete) flag variety of G. The action by
right translations of K on T\K extends holomorphically to an action of
G . Further, given a character y € T, we may extend y holomorphically
to A, then to a character of B trivial on N*. Having done that, we may
consider the induced representation C(B\G; x) (see §A.1.14). Decompo-
sition (3.5.5.1a) then shows that by restricting elements of C°°(B\G}; x) to
K, we obtain an isomorphism

(3.5.5.5) C®(B\G; x) =~ C™(T\K; x).

On the other hand, the line bundle C x X G is a holomorphic line bundle
over B\G. Denote it by L, . In these circumstances, it is natural to look
at the space I'(B\G; L,) = H'(B\G; L,) of holomorphic sections of L, ;
and more generally, one can consider the (Dolbeault or, equivalently, sheaf)
cohomology groups H?(B\G; Lx) [GrHa, Hart]. Since G acts holomor-
phically on L., the spaces H?(B\G; Lx) will all be G-modules. Note that
HO(B\G ;L) is a subspace of C*°(B\G; x)—the kernel of the 8 operator;
however, the higher cohomology groups are not subspaces of C*(B\G; x).
The BWBK theory describes the spaces H?(B\G; L,) as G-modules, and
relates this to Lie algebra cohomology.
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The group T of characters of T is a lattice, isomorphicto Z', r =dim T .
Given y € T, let Dy be the derivative of yx at the identity. Then Dy €
t* C a*, and the map x — Dy identifies 7 with a lattice inside t.=a". We
will pass back and forth between y and Dy without comment. Holomor-
phic extension to A further identifies T toa group of quasicharacters (i.e.,
homomorphisms into C*) of 4. The differentials of these quasicharacters
are elements of a*, the same elements Dy, x € T", previously obtained.
Denote by ag the real linear span of the lattice of Dy . Then a; is a real
form of a, that is, we have the decomposition

(3.5.5.6) a’ =ap @ iay
of a* as a real vector space. In the corresponding decomposition
(3.5.5.7) a=ag®iag

we have t = iay; that is, the elements of ap are purely imaginary on t.
For K = SU, , the Lie algebra a consists of complex diagonal matrices of
trace zero, ay is the subspace of real diagonal matrices, and t is the space
of purely imaginary diagonal matrices.

The Weyl group of A is the normalizer of 4 in G, modulo 4:

(3.5.5.8) W ~ N(A)/A,

where N(A) is the normalizer of 4 in G. We may also describe W as the
normalizer of T in K, modulo T:

(3.5.5.9) W ~ N(T)/T.

The group W actson A, hence on a, by pullback via the exponential map—
this action is via linear transformations. By duality, W acts on a". Under
these related actions, T, t, ap, ap, and the lattice T c ag are all pre-
served by W . The action of W on t or a; is generated by reflections in
hyperplanes—these reflections are the elements of W contained in the copies
of SL, generated by root subspaces g,, g_,, as described in §2. Also as
described there, the reflection hyperplanes divide ap and a; into convex
cones, the Weyl chambers, which are permuted simply transitively by W .
The positive Weyl chamber in ag, relative to b*, or B is

(3.5.5.10) ay={aca:a(a)>0, allg _eb'},
and the corresponding positive chamber in a;; is
(3.5.5.11) (ag)" = {A>0 on ag}.

For K = SU, , the Weyl group is S, , the symmetric group, which acts by
permuting the diagonal entries of elements of ag , which consists of traceless
real diagonal matrices, and a; is the cone in ay consisting of matrices whose
diagonal entries a; decrease with i:a, > q; e
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Write
(3.5.5.12) T " =Tn@Ey)".
R

Then T consists of the dominant characters, or dominant integral weights—
the highest weights of finite-dimensional representations, as described in
§3.5.3.

The result of Borel and Weil describes the cohomology of line bundles
defined by inverses of dominant characters [Serr, Warn, Knap2].

THEOREM 3.5.5.13 (Borel-Weil). (a) Let x ' € T+ be a dominant char-
acter. (We then say x is antidominant.) Then the space HO(B\G; L) of
global holomorphic sections of the line bundle L, over B\G defined by x is
an irreducible G- (or K-) module, isomorphic to the dual of the representation
whose highest weight is y~".

(b) For p>0, H?(B\G; L ) =0.
X

REMARKS. (a) Theorem 3.5.5.13 is connected to the orbit method through
a double interpretation of the complexification of the Lie algebra of k: one
as the (real) Lie algebra of the complexified group G, i.e., real right-invariant
vector fields on G, and one as complex right-invariant vector fields on K.
For functions which are holomorphic on G, these two interpretations coin-
cide. Thus, for a holomorphic section f of L, left invariance of f by N7,
as a function on G, can be interpreted in terms of fl x as a condition of be-

ing annihilated by the complex vector fields on K defined by n* C ko . Put
another way, a function in C*(T\K ; x) will extend to a holomorphic N*-
left-invariant function on G if and only if it is annihilated by the vector fields
from n" C k., which may be seen to define a system of Cauchy-Riemann
type equations. Thus, interpreted on K , the holomorphy condition becomes
a condition of being an eigenfunction for the algebra b* = n* +a C k.. The
algebra b* is seen to be a complex polarization for the element iy € t* C k",
and this use of complex polarizations is closely analogous to the way they are
used in [AuKo] to produce representations of solvable groups. Although the
Auslander-Kostant construction can be replaced by a construction involving
only the real group, but inducing from representations of Heisenberg groups,
not just from characters, there does not seem to be any escape from infinites-
imal constructions involving complex polarizations in the case of semisimple
groups.

(b) The presence of inverses and duals in this result makes it somewhat
confusing. Perhaps the quickest way to verify the proper formulation is to
consider the element of H 0(B\G ; Lx)* defined by the Dirac J at the identity

in G. If p denotes the action of G on HO(B\G; Lx) by right translations,
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then
p b)) =8(p(b)”" 1)

=p®) (V) = £ =27 (B = 27 (B,
(beB, feH

1

whence
* -1
p (b)) =x (b)é.

In other words, J is a highest weight vector for H 0(B \G; LX)* , with weight
X

Part (a), the positive part of this result, is essentially a restatement of
the highest weight theory. The main observation is that HO(B\G; L,) can
contain at most one N -invariant function. (Indeed, all of C™(B\G; x)
contains only one N*-invariant function.) This is because N* has a dense
orbit on B\G. This follows from the Bruhat decomposition (see §1.1 and
[HaChl, Knap2, Wall2]) which says G = BWN * o that, in particular, there
are only finitely many N orbits on B\G, one of which is open and dense;
but the fact that there is an open N'-orbit in B\G is more elementary than
the Bruhat decomposition.

The fact that H O(B\G; L,) consists of holomorphic functions means that

the G-invariant subspaces of H 0(B\G'; Lx) are the same as the K-invariant

subspaces—in particular HO(B\G; Lx) must be a direct sum of irreducible
finite-dimensional G-modules. The theorem of the highest weight means that
any G-irreducible subspace of H 0(B\G; Lx) must contain an N -invariant
vector. Hence, there can be at most one subspace. On the other hand, if
Vx is the irreducible g-module with highest weight —Dy and highest weight
vector v, , then by exponentiating the action of g we obtain an action of G
on V_ D,> and the matrix coefficients (cf. §A.1.11)

010 (8 ) =MgT (v)  AeV,

define a G-equivariant embedding of V' p into, hence an isomorphism with,
X

H'(B\G;L,).

The complementary part (b) of Theorem 3.5.5.13 is a consequence of the
Kodaira Vanishing Theorem [GrHa, Hart].

Theorem 3.5.5.13 provides a “geometric” realization of the irreducible
representations of K (or g). However, it also raises an issue that it only
partially resolves: although we can form the line bundles L, over B\G

for all y in T, Theorem 3.5.5.13 only describes the cohomology groups
H?(B\G; Lx) for y antidominant. The highest weight theory guarantees

that HO(B\G; L, = {0} if x is not antidominant, but it is silent about
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higher cohomology. The structure of the higher cohomology groups was clar-
ified by Bott [Bett]. To state Bott’s result (conjectured by Borel and Hirze-
bruch), we need to introduce the character

(3.5.5.14) 6(a) = det(Ad(a),+) = [] x.(2)-

a>0
Here y, is the character of 4 whose derivative Dy, is equal to the positive
root . Thus J is the character of 4 whose derivative at the identity is the
sum of the positive roots. We observe that J is a holomorphic square root
of the modular function of B,

(3.5.5.15) d(Ad(a)n) = |6(a)|* dn

if dn is Haar measure on N'. It is a somewhat subtle point in the struc-
ture theory of compact groups that, under our assumption that K is simply
connected, J itself has a square root in T’; we will denote this by o 1t
is not hard to check that ¢ and hence '/ is dominant. For example, if
G =SL,(C), and we use the usual diagonal coordinates {a;} on A4, then

(3.5.5.16a)) o@ag, ... ,a,)= H(aiaj—l) _ Ha;l+l—2_j
J

i<j
n+l1 2
j j
Thus for SL, , we have
1/2 —J —j
(3.5.5.16b) 6"a,,...,a)=T]a;" =114
j j

Note that 5!/ is essentially identical with the x P used in §3.5.4 (cf. formula
(3.5.4.18)).

THEOREM 3.5.5.17 (Bott). Consider x € T, and form the associated holo-
morphic line bundle L, over B\G .

p(a) If xé“l/ 2 s singular (i.e., fixed by a nontrivial element of W), then
HY(B\G; L,)=0.

(b) If xé‘l/ 2 is not singular, then there is a unique w in W such that
w(x—lél/z) is dominant, i.e., w(xé_l/z) is antidominant. In this case, set

(3.5.5.18) w=w(y 6"

Let [(w) =1 be the length of w as an element of W (cf. [Hilr, Bour]). Then
HP(B\G;L,)=0 for p#1, and

(3.5.5.19) H'(B\G; L)~ (V,)",
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where V,, is the irreducible representation of G with highest weight w , with
w given by (3.5.5.18).

Bott’s proof of Theorem 3.5.5.17 used spectral sequences. However, Bott
noted that, by some elementary yoga in sheaf cohomology, this theorem is
equivalent to a statement about the Lie algebra cohomology of the Lie al-
gebra n* of N* with coefficients in a g-module ¥, w € T*. Since the
Cartan subgroup A4 acts on n* by automorphisms, one sees from the stan-
dard construction [BoWa, Jacel, Knap1] of Lie algebra cohomology that each
cohomology group H”(n", V,,) naturally has the structure of an 4-module.
Kostant [Kostd] gave a direct explicit description of H”(n", Vw) as an A-
module, obtaining Bott’s result as a corollary. To state Kostant’s Theorem,
we introduce the notation Cx for the one-dimensional irreducible represen-
tation of 4 whose associated character is y .

THEOREM 3.5.5.20 (Kostant). Let y € T* be a dominant character of
A, and let v, be the associated finite-dimensional irreducible representation.
Then there is an A-module isomorphism
(3.5.5.21) H'®", V)~ > Cyyp

l(w)=q

where W(y) = 111(://51/2)(5_1/2 .

The essential, and originally the most difficult, part of the proof is to show
that only the Cm(w) can appear in the H/(n*, VW). (Aribaud [Arib] gave
a simplified argument based on the Weyl character formula.) This is now
understood to be an aspect of the Harish-Chandra homomorphism [Hump,
Knap2, Wall2], which also accounts for the “p-shifts” in the w(y) . This basic
result gives a precise description of the center of the universal enveloping
algebra of k, or g. The direct sum decomposition (cf. (3.5.3.4))

+ +
g=n oadn
of g leads via the Poincare-Birkhoff-Witt Theorem (cf. [Hump, Jacol, Serr2],
etc.) to the decompositions
@) =% )o#(@)e%m)
~%n ¥ (a)o ¥ (gn".
For u € Z(g), denote by p(u) the component of # in Z(n ) ® #Z(a), the
first summand of decomposition (3.5.5.22).

THEOREM 3.5.5.23 (Harish-Chandra homomorphism). (a)If ue %(g)AdA ,
the subalgebra of % (g) of elements invariant under Ad A, then p(u) € Z(a).

(b) The mapping u — p(u) defines an algebra homomorphism from
?/(g)AdA to 7Z(a).

(c) If we make the identifications

%(a) ~ S(a)~ P@"),

(3.5.5.22)
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where S(a) denotes the symmetric algebra on a and P (a”) the algebra of
polynomials on a", then the map

(3.5.5.24(i)) p:Z%@®) —P@)
defined by

(i) pw)(A) =pu)(A—p), Ae€a",
where

(iii) 2p =Dy,

ie, pis % of the sum of the positive roots, is an isomorphism

(3.5.5.25) P ZU@g ~P@@)”

from the center of %(g) to the algebra of Weyl group invariant functions
on a*.

Parts (a) and (b) of this theorem are proved by easy computations, while
part (c) may be seen using the Verma module approach to the highest weight
theory, as described in §3.5.3.

In an illustration, and in some sense the crucial case, of Theorem 3.5.5.23,
we recall the formula

F=h"+2ee +e e )=h +2h+4e e
=(h+ 1)2 —1+4e e"

for the Casimir element in #%(sl,) (cf. §3.5.1). Note that 1 = (})a*(h),
where o is the positive root in sl,, since [k, e']=a*(h)e* = 2¢".

The Harish-Chandra homomorphism impinges on Theorem 3.5.5.20 as
follows. Given a representation p of g on a vector space V , the images
p(z), z € Z%(g), are operators which commute with p(x), x € g, and
in particular with p(n*). It follows from the standard construction [Jacol,
BoWa, Knapl1] of Lie algebra cohomology that p(Z %(g)) will induce oper-
ators on the cohomology groups H?(n*, V). Thus the n* cohomology of
a g-module may be regarded as a joint .Z % (g) and #%(a)-module. (The
7 (a)-module structure is of course obtained as the infinitesimal version of
the action of A.) Denote this action by p™ .

THEOREM 3.5.5.26 (Casselman-Osborne [CaOs, Knapl, Voga2]). The ac-
tion p* of Z#(g) on H*(n", V) factors through the Harish-Chandra ho-
momorphism.

(3.5.5.27) P (u) = p" (B(w))
with p as in formula (3.5.5.25).
This result follows from the general machinery of cohomology, if one

observes that the standard resolution of V' as a g-module [Jacol, BoWa,
Knapl] is also a resolution of ¥ as an n'-module, since %(g) is free as



A CENTURY OF LIE THEORY 193

a module over % (n+) by Poincaré-Birkhoff-Witt [Hump, Jacol, Serr2]. Its
relevance for Theorem 3.5.5.20 is that, if V' is irreducible, then p(Z Z (g))
consists of scalars, and via p* will obviously act by the same scalars. Thus
formula (3.5.5.27) constrains the action of #%(a*). Indeed, it immediately
implies that the only characters of A which could possibly appear in formula
(3.5.5.21) are the ones which do. As mentioned above, this is the essential
step in the proof of Theorem 3.5.5.20, which in turn implies the “geometric
realization” Theorems 3.5.5.13 and 3.5.5.17.

3.5.6. In this subsection we complete the geometric quantization version of
the basic representation theory of compact groups by giving Harish-Chandra’s
orbit method interpretation of the Weyl character formula [HaCh3]. With
hindsight one can see in this remarkable paper the seeds of a large fraction
of nonabelian harmonic analysis as it has developed in the ensuing 30 years.
Besides Harish-Chandra’s own work on the construction of the discrete series,
it foreshadows the whole orbit method and also implicitly uses the oscillator
representation [Folll, Howe3, Shal, Weill]. Our account will make this last
connection explicit. (The first explicit use of the connection is [Verg2]).

As in §3.5.4, we will present only the example of the unitary group U,
to save notation and preparation. The Lie algebra u, of U, is the space of
skew-adjoint n x n complex matrices. To be definite we recall

(3.5.6.1) u,={Te€M,(C):T=[t,]; t,,=~F,},

where the overbar denotes complex conjugation, and {tjk}, 1<j,k<n,
are the entries of the n x n matrix T. The unitary group U, acts on u
by conjugation. As usual, we denote this action by Ad:

Adg(T)=gTg~', Teu,geU,
On u, we can define a positive definite inner product ( , ) by the formula
(S, T) = trace(ST") = —trace(ST) (S, T €u,)

== > Skl jk

(3.5.6.2) 1<j,k<n

= —Zsjjtjj +2 Z (Res;Ret, +Ims;Im¢,).
1<j<k<n

n

This inner product is easily seen to be invariant under Ad U, . Using ( , )
we can define a Fourier transform on functions on u, by one of the usual
recipes

(3.5.6.3) 7(S) = / F(D)e ST g,

Here dT is Lebesgue measure defined by coordinates with respect to any
orthonormal basis for ( , ). For example, we could take the coordinates
itjj , 2712Re ik » and 27 ’Im L > 1 < j < k < n. With this normalization
of Lebesgue measure, the Fourier transform is unitary.
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Let a C u, be the subspace of diagonal matrices

ib,,

(3.5.6.4) a= : b eR

ib,,

We denote the typical element of a by B, and the typical entries of B will
be ibjj. The restriction of the inner product ( , ) of formula (3.5.6.2)
defines an inner product on a; in fact, it is just the standard Euclidean inner
product with respect to the coordinates b i The orthogonal complement a’
of a with respect to ( , ) is the space of skew-adjoint matrices with zeros
on the diagonal. We can define the Fourier transform for functions on a by
an analog of formula (3.5.6.3).

We know by spectral theory for self-adjoint matrices [Lang3] that every
T in u, is conjugate by U, to an element of a. Thus we have a surjective
mapping

(3.5.6.5) v:axU, —u,
y(B,g)=gBg"', Bea, geU,
This map is an infinitesimal analog of the map I' of formula (3.5.4.3), and
it has a basic theory parallel to the theory for I". First, it factors to a “polar
coordinates” map
y:ax(U,/4) -,

which is generically #!-to-one. Second, there is a polar-coordinates integra-
tion formula analogous to formula (3.5.4.21) :

(3.5.6.6) /U 0, (T)p, (D) dT =c, / 9,D(B)p,D(B) dB.

Here ¢, is an appropriate constant and D is, as before, the discriminant
function

(3.5.6.6b) pB)= [[ ®;-b;, Bea

1<i<j<n

The constant ¢, can be determined explicitly (see [HaCh3, HoTa]). As op-
posed to the situation in §3.5.4, here D(B) is not to be thought of as a sum
of characters, but as a polynomial function. Its structural interpretation is
that it is the product of the positive roots for a. The proof of formula
(3.5.6.7) is parallel to that for (3.5.4.21). In particular the calculation of the
volume |D2 (B)| for the orbit AdU,(B) is a Jacobian determinant compu-
tation slightly simpler than but quite similar to the volume factor v(a). See
the discussion preceding formula (3.5.4.5).



A CENTURY OF LIE THEORY 195

Also in parallel to §3.5.4, we may define the spaces Lz(un)AdU" of con-

jugation invariant L’ functions on u, , and L*(a)" 8 of skew-symmetric
functions on a. We may define a map

(3.5.6.7) M, ores, : L*(u
D a

with notation parallel to statement (3.5.4.12), and it will again be true that
this map (multiplied by c;/ 2, with ¢, as in (3.5.6.6a)) is a unitary isomor-
phism.

Since conjugation by U, preserves the inner product ( , ), it will com-
mute with the Fourier transform. Consequently, the space Lz(un)AdU
be invariant under the Fourier transform on u, . Similarly L*(a)"”*" will
be invariant under the Fourier transform on a. Since we will now be con-
sidering the Fourier transform on u, and on a at the same time, we will use
the notations " and "+ respectively for them in order to be definite about
which one is meant.

Harish-Chandra’s discovery about the map M/, o res, was that it inter-
twines the two Fourier transforms.

n)AdU,, - L2(a)W ,sgn

= will

THEOREM 3.5.6.8 (Harish-Chandra Restriction Theorem). The mapping
(3.5.6.7) satisfies

Ae _ —n(n=1)/2 A
Mpores ot =i "o M), ores,.

In other words,
D(B)(p")(B) = i""""(Dg )"(B).

Since the Fourier transform is a nonlocal operator, a result like Theorem
3.5.6.8 is quite surprising. We will see shortly how special the circumstances
are which give rise to this phenomenon.

To appreciate the structure underlying the Harish-Chandra Restriction
Theorem, consider the Laplace operator on u dual to the inner product
(3.5.6.2). It is the second-order, constant coefficient operator A, or A, when
more specificity is needed, given by the formula

z": 8> 1 5 8>  8*
(3.5.6.9) A=A = —+ 5 —+— ],
YE0s 2 e \ O O

where we take Lg = Ty + isjk, i.e., Fik and S are respectively the real
and imaginary parts of i - The factor % occurs because, as noted above
(see formulas (3.5.6.2) to (3.5.6.4)), the coordinates for which ( , ) looks

like the standard Euclidean inner product are S;js 2712 Tik for j <k, and

-2 Sik for j < k. The operator A, is the standard Laplacian with respect
to these coordinates.
Let us write

(3.5.6.10) P(T) = (T, T).
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Alsolet r* denote the operation of multiplication by P Itis easy to compute
the commutator

0 2
— | +2n
(3.5.6.11) (Z Jja E Jkar kasjk)

jJ 1<j<k<n
=4F + 2n® s

where E is the standard Euler degree operator on u,, , which multiplies poly-
nomials of degree m by m.
For R”, consider the operators
+ . 2 - _ iA _ 1 2
(3.5.6.12) e =mir, e =4 h=E+ (2>n .

Analogous operators may be defined for any space endowed with an inner
product, as we have done above for u, , and the statements below will hold
also for such spaces. Using formula (3.5.6.11) and some other simple calcu-
lations, we can check that e and 4 form a standard basis for a copy of the
Lie algebra sl, .

,JHEOREM 3.5.6.13 (Shale [Shal]). There is a unique representation @ of
SL,(R), the two-fold cover of SL,(R), on L2(R”) such that the image of
the associated representation of sl, (see §A.1.13) is the span of the operators
(3.5.6.12).

REMARKS. (a) The operators (3.5.6.12) are a Lie subalgebra of the Lie
algebra of all polynomial-coefficient differentials of total order (= polynomial
degree + order of differentiation) two on R”. These operators are the span
of

. 1/ & @ o Oy i &
(3.5.6.14) TiX;X) 5<xja—xk+3—xkxj) Xj axk"' 2 4z Ox, 8xk

This algebra is isomorphic to the symplectic Lie algebra in 2n variables,
denoted sp,,. Shale actually showed there is a unitary representation of
§f)2n(R) , the two-fold cover of the real symplectic group in 2n variables,
such that the image of the associated representation of the Lie algebra is the
span of the operators (3.5.6.14).

(b) Shale’s interest was quantum field theory. Shortly after Shale, Weil
[Weill], motivated by Segal’s work on automorphic forms, independently
showed the existence of this representation. Weil also established the exis-
tence of an analogous representation for Sp,,(F), the symplectic group in
2n variables with values in a p-adic field F . Weil showed that this represen-
tation underlies the classical theory of -series, one of the most widely used
means for constructing automorphic forms (cf. [Igus, Shmz1, 2, KuMil-3,
ToWal-2, Shim, Shin2, Niwa], etc.).

(c) T call this representation the oscillator representation, because of its
close association with the quantum harmonic oscillator (see §3.1). Other
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names in use are the Weil representation, the Segal-Shale-Weil representation,
the harmonic representation, etc.

(d) In some sense the oscillator representation is the quintessential example
of geometric quantization, and it is derelict not to present its construction in
detail. On the other hand, the construction gets rather involved and involves
some special ideas, and so would constitute a sizeable digression. Also, I
have written quite a bit about it [Howel-6], and do not wish to repeat myself
here. Detailed accounts of it, from the viewpoint of geometric quantization,
can be found for example in [Blat, LiVe]. My own account, which takes a
somewhat different viewpoint, is [Howe3].

(e) In fact, we do not need the full Theorem 3.5.6.13 for this discussion.
We only need to exponentiate the operator % —nr’ , which is a multivariable
variant of the Hamiltonian for the quantum harmonic oscillator discussed in
§3.1. It can be handled by the same techniques. Thus our discussion is more
or less complete on this point. However, Theorem 3.5.6.13 seems to identify
the natural relevant structure for this situation. This connection was pointed
out by Vergne in [Verg2].

The relevance of Theorem 3.5.6.13 to the Harish-Chandra Restriction The-
orem is that the Fourier transform is almost an element of w(SL,(R)). Con-
sider the element

IPC e ) 2 A
(3.5.6.15) k=e —e = > <2nr 27:)
in our copy of sl,. An easy computation shows that k generates the stan-
dard maximal compact subgroup SO, inside SL,. On the other hand, from
calculations just like those of §3.1, we know the eigenvalues and eigenvectors
of k. From the standard formulas for the Fourier transform on R”, viz.,

2 2
)/\=e nr,

A

. a . 6 . S —nr
2mix f) = —— — =2nix.f, e
we can deduce that the eigenvectors for k are also eigenvectors for the Fourier
transform, and further that the Fourier transform can be written as

(3.5.6.16) N = i7" exp(nk/2).

See for example [HoTa, Howe3].

REMARK. The scalar factor i~/ in equation (3.5.6.16) comes from the
fact that the smallest eigenvalue of k is % rather than zero. This fact is
interpreted in quantum mechanics as the Uncertainty Principle [Shan], and in
quantum electrodynamics as the zero-point energy, or energy of the vacuum
[Thir]. It also reflects the fact that @ is a representation of SL,(R), and not
of SL,(R).

In view of formula (3.5.6.16), Theorem 3.5.6.8 follows from
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THEOREM 3.5.6.17. The mapping M, o res, of formula (3.5.6.7) inter-
twines the restriction of the oscillator representations w, and w, of §VL2(R)
on L*w,)*% and L*(a)"” " respectively. It defines a unitary (up to mul-
tiples) equivalence of §sz(R) modules.

ReMARKS. We should note that the operators (3.5.6.12) are all invariant
under conjugation by orthogonal transformations, and therefore the oscil-
lator representation, whose existence is asserted by Theorem 3.5.6.13, will
commute with orthogonal transformations. Since both spaces Lz(un)AdU"

and L*(a)” "*® are defined by how their elements transform under certain
orthogonal transformations, each is invariant under the relevant oscillator
representation. Hence the assertion of Theorem 3.5.6.17 at least makes sense.

We will sketch a proof of this theorem.

Since in both representations the image of the operator k has discrete
spectrum with finite-dimensional eigenspaces, as is revealed by the compu-
tations of §3.1, easy technical arguments reveal it is enough to show that
Theorem 3.5.6.17 is true infinitesimally, i.e., that the map M), ores, inter-
twines the operators (3.5.6.12) for u, with their counterparts for a. To do
this for the operator e’ is trivial: one needs only the facts that restriction is
a homomorphism for pointwise multiplication, and that pointwise multipli-
cation of complex-valued functions is commutative. To check it for h is also
very simple: it uses the fact that a is invariant under scalar multiplication
in u,, and that D is homogeneous of degree %(dim u, —dima).

Thus the crucial calculation is to show that the map M), ores, intertwines
the two Laplacians A, and A,. We would like to perform this calculation
in a moderately general context, to illustrate the issues involved. Related
calculations are given in [Helg3, Helgd]. See also [HoTa].

Consider R” C R"™™. Use coordinates x,,...,x, on R", and let
Y15¥y5+++5Y,, be the remaining coordinates on R"™. Imagine we are
giving a “nonlinear orthogonal projection”

(3.5.6.18) @®:R"™" R",
(D(xay)=(¢1(xsy)a ¢2(X,y),...,¢n()€, y))

Precisely, the points of R” should be fixed by @, and the fibers ® ' (x), x €
R", should intersect R” orthogonally. In formulas, these conditions are

(3.5.6.19a) ®(x,0)=x,
od
(3.5.6.19b) a—y(x, 0)=0.

J
For the calculations below, we need only that ® be defined on some open
set intersecting R” .

Our prototype for ® is of course the map from u, to a which takes 7 to
an element in a conjugate to 7 . Globally, this map is not well defined, but
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in a neighborhood of any regular point of a it is well defined, and satisfies
conditions (3.5.6.19).

We want to take a function f on R”, pull it back by ® to a function on
R™"™ , apply the Laplacian on R"*™, then restrict the result to R”. Let A,
be the Laplacian in the x variables, and Ay the Laplacian in the y variables,

so the full Laplacian on R™™ is A + A, . We compute, for x € R",
A(fo®@)(x,0)= (A, +A)(foP)(x, 0)

o (of 8¢j>
=A 2 (2LD ,0
x(f)(x)+(§l’; 5, (axj 5. )(x )

(3.5.6.20) 2 . 26,
=A@ + (Z L She @i) (x,0)
ljk

x,0x; 9y, 0y, = 0x; aylz
af

= A(f)(x) + ij(qus,)(x, 0 5
We want to compare this with the result of conjugating the Laplacian on
R” by a function. Thus we select a function ¥ on R" and we compute

(3.5.6.21)
(WAL f(x) = ¥ (DA, (Wf)(x)
dy(x) 8 f(x)

=y A NEW ) + 207 ()Y 5 =
j J J

+y 7 f(x) A W)(x)
_ 1 oy of A (y)(x)
Comparing formulas (3.5.6.20) and (3.5.6.21), we see that if these two
operations are going to be equal, the equations

2 oy
v EQ;—A,,%(X,O),

(3.5.6.22b) A (¥)=0

must hold. But equation (3.5.6.22a) already determines y up to a scalar
multiple. It will only be by some lucky accident that we find the ¥ so
determined to be harmonic, i.e., that condition (3.5.6.22b) also holds. (In
addition, the Ay¢ ; need to satisfy an integrability condition in order for
(3.5.6.22a) to have a solution.)

Let us compute the y satisfying (3.5.6.22a) for the case of the eigenvalue
projection of the unitary group. Here R” = a, and the orthogonal space is
at , on which we may take coordinates 2—1/2rjk and 2_1/2sjk , 1<j<k<
n, where ¢ e =Tt is;, are the off-diagonal entries of a skew-adjoint matrix
T.Let E i« bethe matrix with all entries zero except for ones in the (j, k)th

(3.5.6.22a)
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and (k, j)th places. Let B be a diagonal matrix, with eigenvalues ib,. To
compute the right-hand side of formula (3.5.6.22a), we need to compute

d’ <

—‘}?bl(B + 8Ejk)|e=0 ,
where here ib;(B + E &) indicates the Ith eigenvalue of B+E jk » Dot the [th
diagonal entry, which of course does not depend on ¢.

It is easy to see that b, does not change unless / = j or / = k, and

that the computation of b ; and b, only involves the 2 x 2 matrix formed

from the entries in the jth and kth rows and columns of B + ¢E k- Thus
the computation comes down to a 2 x 2 matrix problem, viz, to find the
eigenvalues of

We find that they are
1
3 (/11 /(3 -2 + 482>

1 2¢>
_5(/11+/12:|:|/11—/12| (l+m+"'>.

From this result, we easily find that

1
Ab. =2 .
v :L;j A=A
From this formula, we can see that y = D, the discriminant, will solve the
system (3.5.6.22a). Further, it is well known that D, as the skew-symmetric
polynomial of smallest possible degree, is necessarily harmonic. Thus D
satisfies equations (3.5.6.22). Combined with our previous remarks, this
establishes Theorem 3.5.6.17.

We now discuss the connection between Harish-Chandra’s Restriction The-
orem and the Weyl character formula. Consider the Schwartz spaces . (u,)
and #(a) of rapidly decreasing smooth functions on u, and a. (See [Foll,
CoGr, Lang2], etc. for the basic facts on Schwartz spaces.) From Theo-
rem 3.5.6.8 or Theorem 3.5.6.17 one can conclude that the unitary (up to
scalars) map M ores, of formula (3.5.6.7) is also an isomorphism between
the Schwartz spaces .%(u,)**" and #(a)” >**". Dual to this map, we have
a pullback map on tempered distributions:

(3.5.6.23) (MD o reSa)* .t (a)W,sgn . y*(un)AdU"-

Among the conjugation-invariant distributions on u, , probably the most
important are the orbital integrals: given T € u, , the orbital integral defined
by the conjugacy class AdU,(T) is

(3.5.6.24) )= [ fadg(m)de.




A CENTURY OF LIE THEORY 201

Note that to get all possible orbital integrals, one need only consider 7" in a.
Every conjugation-invariant distribution on u, is expressible as some sort of
superposition of orbital integrals.

The analog of orbital integrals in the space ¥ (a)
symmetric sums

(3.5.6.25) skew(dz) = D sgn(w)d,z,  Bea,
weW

where 6, indicates the Dirac delta at B. Note that skew(d;) # 0 if and
only if D(B) # 0. From the elementary computation

(Mo resa)*(skew(JB))(f) = skew(d,) (M), o res,(f))
= skew 8,(Df) =#(W)D(B)f(B), fe€Fu)* " Bea,
we conclude
(3.5.6.26) (M, ores,)” (skew(d)) = #(W)D(B).%.

We want to combine this formula with Theorem 3.5.6.8. Consider the
Fourier transform of the orbital integral %, , B € a. Since ., has compact
support, its Fourier transform has the form

(3.5.6.27) Ty =(F)°dT

w
8% are the skew-

where dT is Lebesgue measure on U, and (f‘;)o is an analytic function
which is Ad U, -invariant, hence determined by its values on a. Combining
formulas (3.5.6.26) and (3.5.6.6) with Theorem 3.5.6.8, we conclude

(3.5.6.28) (%) (B") = ¢,(D(B)D(B")) " skew x_,(B') B'ea

for an appropriate constant ¢, . Here we have written x,(B’) = e?™(B.B)
(An extra computation shows that ¢, = (]'[Z;ll KYGE)" with m =
n(n—-1)/2.)

Using this formula, we can give an orbit-theoretic interpretation of the
Weyl character formula. Let exp: T — exp(7’) be the natural exponentiation
map. The map exp allows us to identify a lattice in a with the character group
of the torus 4 = expa. Specifically, the restriction of exp to a is a group
homomorphism. If B € a is such that kery, D kerexp, then x, may be
pushed forward to A4, where it will define a character. Let us call B € a
integral if x, factors through exp on a. In terms of coordinates, we can see
that if B € a has diagonal entries ibj. , then B is integral if and only if the
b ; ’s are integers. Further, if we identify B with its n-tuple of coordinates,
then our notation x, for characters is consistent with the notation of §3.5.4.

The Weyl group W of permutations acts on a in the obvious way, and
this action commutes with exp. We have the notion of positive Weyl chamber
in a (cf. §2.10). In this case the positive Weyl chamber is

a+={Bea:bj2bj+,}.
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Let us call B dominant if B € a*. Denote by p the element of a whose
Jjth diagonal entry is i(n — j). (The parallel with formulas (3.5.4.18) and
(3.5.5.16) will be evident. The need to multiply by i here comes simply
from the concrete form of the Cartan subalgebra a.)

With these notations, we can state a formula which combines the Weyl
character formula with the Harish-Chandra restriction formula.

THEOREM (3.5.6.29) (Harish-Chandra-Weyl character formula). The irre-
ducible characters of U, , as functions on the maximal torus A = expa, have
the form:

D(B

o+p

)D(B)(F, )'(~B)

3.5.6.30 h B =

>

where B is an appropriate dominant integral element of a.

REMARKS. (a) This formula is the analog for compact groups of the Kir-
illov character formula (3.3.1.7). A parallel for solvable groups which in-
volves multiplication of the Fourier transform of the orbital integral by a
correction factor is formula (3.4.1.2.1).

(b) Here again, as in the Verma module description of finite-dimensional
representations (§5.3.3), and in the Weyl character formula (§5.3.4), we see a
“p-shift” between the highest weight of the representation and the parameter
we attach to the representation. Thus the Ad U, -orbit associated to the trivial
representation of U, is not the origin, but rather the orbit through p. This
phenomenon of p-shifts pervades the orbit method for semisimple groups.
It is bookkeeping forced on us by the Harish-Chandra homomorphism (cf.
Theorem 3.5.5.23).

(c) The argument given here for the Harish-Chandra Restriction Theorem
and formula (3.5.6.30) looks quite different from the ones based on [HaCh3]
(cf. [Helgl, Wall2]). Harish-Chandra first studies radial components of in-
variant differential operators, then uses them to deduce formula (3.5.6.30),
then finally proves the Restriction Theorem. We established the Restriction
Theorem first, then deduced formula (3.5.6.30). We could easily also deduce
the results on radial components from the Restriction Theorem. However,
although the order of main results is different, the crucial step in both de-
velopments is the computation of the radial component of the Laplacian
(formula (3.5.6.20) and the discussion following it). In [HaCh3], the oscilla-
tor representation appears only implicitly, in the use of taking commutators
with the Laplacian to convert an invariant polynomial into the dual constant
coeflicient operator.

3.6. Noncompact semisimple groups. Noncompact semisimple groups have
received the bulk of researchers’ attention in representation theory since
World War II, beginning with the papers of Wigner [Wign], Bargmann [Bargl],
Gelfand-Naimark [GeNa], and Harish-Chandra [HaCh0]. Until the late
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1960s, Harish-Chandra was a fairly lonely pioneer, but since then the field has
attracted a substantial number of workers. Fundamental progress has been
made, including Harish-Chandra’s Plancherel Formula [HaCh22], and the
classifications of Bernstein-Beilinson [BeBe], Langlands [Lgld4], and Vogan
[Vogad] of the nonunitary irreducible representations. But many interesting
and even basic problems, such as the determination of the unitary dual, re-
main to be solved (see, however, [Voga5, Barb, Tadi]), and much of the work
already done sits undigested and unapplied.

In this account, we can only summarize some of the high points. We try to
emphasize analogies with the easier classes of groups already discussed, and in
particular we try to formulate results in terms of the orbit method. However,
we emphasize that the structure of geometric quantization is for the most
part imposed a posteriori, and played little role in the original arguments.
Nevertheless, David Vogan currently is trying to create an understanding of
the unitary dual more or less explicitly based on an appropriate version of
the orbit method [Voga6].

Due to the greater length and technical involvement of the arguments es-
tablishing results about noncompact semisimple groups, we must for the most
part omit them, and be content with stating results. Two very useful books
for learning a large portion of the theory in its current form are [Knap2] and
[Wall2). We also refer to [Vegal] for a nice overview.

3.6.1. PrRINCIPAL SERIES. The main concrete objects of study in the repre-
sentation theory of noncompact semisimple groups are the principal series.
As with many things, the meaning of the term “principal series” can vary
slightly with context. We begin by describing the most elementary case.

Let G be a semisimple Lie group, and let P, C G be a minimal parabolic
subgroup (cf. §A.2.4). We have a decomposition

(3.6.1.1) Py = My4,N,,

where N, is the unipotent radical of F, (cf. §A.2.4), a connected, simply
connected nilpotent group; A, is an abelian group, connected and simply
connected (i.e., isomorphic to R” for m = dim A, ), and such that under the
adjoint action, A4, acts by diagonalizable matrices with positive real eigen-
values; and M|, is compact. The group N, is normal in P, and M and
A, centralize each other. If G =SL,(R), then N; consists of the unipotent
upper triangular matrices, A4, is the group of diagonal matrices with positive
entries and determinant one, and M, is the group of diagonal matrices with
entries =1 and determinant one.

Let v be a quasicharacter of 4, (a homomorphism from 4, to C*), and
o an irreducible representation of Af;. Note that ¢ is finite dimensional.
If V is the space of o, define the representation 6 ® y of P, on V by

o ® w(man)(v) = y(a)a(m)(v), meM,,ac€Ad,,

3.6.1.2
( ) neN,,vevr.
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Let JPD be the modular function of P, (cf. formula (A.1.15.3)). Define

the principal series representation associated to ¢ and y to be the induced
representation (cf. §§A.1.14-16).

(3.6.1.3) PS.(o, y) = 1nd o ® (Wo, ‘/2)

The set of representations P.S.(1, y), where 1 here denotes the trivial
representation of M, , is called the spherical principal series. (From an ety-
mological viewpoint, this is a solecism: zonal principal series would be prefer-
able.) The spherical principal series are slightly simpler than the P.S.(o, )
with ¢ nontrivial, and they have some claim to a special place: they en-
compass all irreducible representations of G which contain a nonzero fixed
vector for K, and consequently, they are the representations involved in the
spectral analysis of functions on the symmetric space G/K . These topics are
treated in detail in [Helgl] and [GaVa].

The quasicharacters of 4, form a complex vector space A€ o of dimension

dim 4. Thus if we let ¥ vary in A0 , the representations P.S.(g, ) form
a famlly, which in some sense (which can be made precise) is continuous
or even holomorphic, of similar-looking representations. This is what the
“series” in “principal series” connotes. Of course, 6;01/ 2isa point in A g ,

and so multiplying ¥ by 6;01/ 2 before forming the induced representation

does not change the family of representations constructed, it only changes
the way they are parametrized. The point of the chosen parametrization is
that it takes unitary representations to unitary representations (cf. §§A.1.3
and A.1.16). For this reason multiplying by 5;01/ 2 before inducing is called
normalized induction or unitary induction. The representations P.S.(g, )
for w unitary are called the unitary principal series, and, by way of contrast,
the whole principal series is sometimes called the nonunitary principal series.
(We remark, however, that even for some nonunitary y , the representation
P.S.(g, w) can be given the structure of a unitary representation, though not
in straightforward fashion [Stei, Knap2, p. 653].)
EXAMPLE. As an example, consider G = SL,(R). We may take

P0=B={[g afl]:aeRx,xeR},
(3.6.1.4) M0={:l:[(1) ?]} A0={[g a91]1a>0},
N0={[(1) )IC]ZXER}.

Consider the space C* ’E(Rz) of smooth functions on R* — {0} which are
homogeneous of degree A, A € C, under positive dilations, and which are
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odd or even under reflection in the origin:
Cc R ={f: (R* - {0}) - C, f smooth,
(3.6.1.5) f(tx, ty) =1 f(x, ) fort>0, and
f(=x,-y)= ef(x, y)}

for A€ C, ¢ = =1. The action of SL,(R) on R’ gives rise in a natural way
to an action p on C* (R2 —{0}) by the recipe

s (3] ;)

It is easy to check that the spaces C’l’g(Rz) are invariant under p, so we
may restrict p to any one of the che.

Define a mapping E from functions on R*— {0} to functions on SL,(R)
by the rule

s B =1 (e o)) =1 (]4)]).

feC™® - {0}), g=[" b

d

A straightforward calculation reveals that the mapping E defines an equiv-
alence of SL,(R) representations

] € SL,(R).

(3.6.1.8) C I RY) = PS.(E, dP),
where &: M, — {£1} is defined by {E([—O1 _01]) =¢ and

&l([g a&]):al, a>0.

Thus the C’I’E(Rz) serve as models for the principal series of SL,(R).

Because of the homogeneity conditions (3.6.1.5) defining ct s(R2) , We see
that a function in this space is determined by its restriction to the unit circle

S'={(x,y) eR: X +y* =1}

and this restriction must be either an even or an odd function according
as ¢ is +1 or —1. The circle S' is an orbit for the maximal compact
subgroup K = SO, of SL,(R). Thus the Fourier series of f| s describes the
decomposition of f* into irreducible subspaces (in this example, eigenspaces,
since SO, is abelian) for K. In particular, we see that each representation
of K occurs with multiplicity at most one. For general groups, the Iwasawa
decomposition (cf. equation A.2.3.5) shows us that the restriction to K of
P.S.(o, v) is also an induced representation

(3.6.1.9) PS.(0, ¥)g =~ indﬁo, 7.
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By Frobenius reciprocity ([HeRo, Knap2, Jaco2] etc.), we may conclude that
an irreducible representation 7 of K occursin P.S.(g, w) with multiplicity
equal to the multiplicity with which ¢ occurs in the restriction T\, of 7
to M. This is certainly not more than dimt. Thus all representations of
K (= “K-types”) occur in the principal series with finite multiplicity, which
means that the principal series are admissible (cf. §3.6.5) representations
[Knap2, Wall2].

The importance of the principal series is brought out by the following
result.

THEOREM 3.6.1.10. (a) The principal series representations P.S.(a , ) all
have finite composition series. The number of composition factors is
bounded independently of o and w . For fixed o, P.S.(o, y) is irreducible
for a dense open set of v .

(b) Let p be any t.ci. (cf $§A.1.7) representation of G. Then p is
infinitesimally equivalent (cf. §A.1.20) to a subrepresentation of P.S.(o, y)
for appropriate ¢ and v .

A weaker version of part (b), only asserting that o could be realized as
a constituent, i.e., subquotient, of some P.S.(¢, ), was proved by Harish-
Chandra in early work [HaChd4], and later simplified by Lepowsky [Lepo3]
and Rader (see also [Wall2]). The refinement giving ¢ as a subrepresentation
was a long-standing problem, resolved by Casselman (see [CaMi]), using a
refined version of Harish-Chandra’s study [HaCh13] of the asymptotics of
matrix coefficients. This study was based on the observation that elements of
the center of the enveloping algebra give rise to differential equations which
the matrix coefficients must satisfy. The differential equations imply that the
matrix coefficients of an irreducible representation have certain asymptotic
behavior at co on G ; this asymptotic behavior identifies the principal series
into which the representation may be embedded.

The generic irreducibility of P.S.(a, ¥), and finiteness of the composition
series in general, has a fuzzier history. Generic irreducibility of the unitary
principal series was proved by Bruhat [Bruh]. Finiteness of the composi-
tion series follows from Harish-Chandra’s Regularity Theorem for charac-
ters [HaCh14-18] (see also [Wall2, Vara]), but proved this way, it is a deep
result. Wallach [Wall2] gives a proof using his “Jacquet module.” The com-
position series of P(g, ) when at least one constituent is finite dimensional
is described by Vogan’s extension of the Kazhdan-Lusztig formulas [KaLul,
Voga7]. Explicit examples and refinements have been given by Casian and
Collingwood [CaCo, Coll]. However, there is still much to understand re-
garding the structure of these easily constructed representations.

Shortly after Casselman’s proof of part (b), Langlands [Lgld4] (see also
[Knap2, Wall2]) showed, again on the basis of Harish-Chandra’s study of
asymptotics of matrix coefficients, that by using a more general notion of
principal series one can obtain a more or less canonical realization of a gen-
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eral irreducible representation. This is the “Langlands classification,” which
we will describe in §3.6.4. Here we describe the more general family of rep-
resentations.

Let P C G be any parabolic subgroup (cf. §A.2.4). Let P = M AN be
the Langlands decomposition ([Knap2, Wall2] and §A.2.4) of P, where N
is the unipotent radical of P, 4 is a connected, simply connected abelian
group, and M is semisimple. The group M A is the centralizer of A4 in
G, and is a Levi component (cf. [Jacol] and §A.2.4) for P. Let o be an
irreducible t.c.i. representation of M, and y a quasicharacter of 4. Let
J, be the modular function of P. We can define a representation g ® ¥ of
P in direct analogy with formula (3.6.1.2). Then we define the generalized
principal series representation associated to ¢ and y to be

(3.6.1.11) PS.(o, ¥) =ind5 o ® (yd; ).

The parallel to formula (3.6.1.3) is patent, and sometimes one drops the ad-
jective “generalized” and just calls the representations (3.6.1.11) “principal
series.” Note, however, that recipe (3.6.1.11) is much more of a black box
than is (3.6.1.3), because the ¢ in (3.6.1.3) is a representation of the com-
pact group M|, and thus is to some extent understood, as described in §3.5.
However, since M is noncompact, determination of the possible ¢ to stick
in (3.6.1.11) is part of the problem under study, although for a smaller group.
Further, we note that, by Harish-Chandra’s Subquotient Theorem mentioned
above, if ¢ is irreducible, the representations (3.6.1.11) are constituents of
the usual principal series (3.6.1.3). For the Langlands classification, we only
have to stick in for o a special class of representations, the “tempered rep-
resentations,” to be described in §3.6.2.

We note again that (3.6.1.11) is a “normalized induction™ if ¢ and
are unitary, then P.S.(o, y) is also unitary.

We should also note that the formation of principal series, also known as
parabolic induction, is eminently compatible with the orbit method. Let

(3.6.1.12) g=n ®p=n &mdadn

be the decomposition of the Lie algebra of G associated to the parabolic
P. If the quasicharacter y in definition (3.6.1.6) is unitary, then it is the
exponential of some A € a" in the usual way:

2miA(a)
b

v(expa)=e aca.

(If w 1is not unitary, we could still use this formula, but would have to take
A in a(*: , the complexified dual of a.) Suppose we have associated the rep-
resentation ¢ of M to the coadjoint orbit through some x € m*, and to
some polarization q of u (which may well be a complex polarization, i.e.,
q C mg). Then it is easy to check that, for generic 4 € a”, the subalgebra
q®ac; ®n, of g, will be a polarization of u® 4 € m" ®a" Cg", and def-
inition (3.6.1.11) would be the representation associated to the Ad G-orbit
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of u ® A according to the usual orbit method yoga. In particular, if M,
is discrete (which is the case for split real groups like GL,(R), Sp,,(R),
etc.) or if M, is abelian (which is the case for complex groups, or qua-
sisplit groups like U(n, n)), then the unitary principal series of definition
(3.6.1.3) are constructed via real polarizations. If M, is nonabelian, then
we can understand its representations in terms of complex polarizations via
the Borel-Weil Theorem (3.5.5.13), so the unitary principal series at least
can be given a place in the orbit method. The combination of the Langlands
classification (§3.6.4) and Zuckerman’s derived functor construction (§3.6.5)
extend this understanding to a class of representations at least big enough
to write the Plancherel formula. A guide for further progress is provided
by some conjectures of J. Arthur [Arth2], and the understanding of a family
of representations dubbed unipotent [BaVo, Vogal], in homage to Lusztig’s
theory of representations of finite Chevalley groups [Luszl]. Alternatively,
the character theory of Harish-Chandra [HaCh17-20, Wall2, Vara], refined
by Rossmann [Ress1, 2] provides the direct connection of representations
with orbits exemplified by formula (3.3.1.7).

3.6.2. TEMPERED REPRESENTATIONS. One of Harish-Chandra’s basic in-
sights into harmonic analysis on semisimple groups was the key role of what
he called tempered representations. For his main goal, the Plancherel for-
mula, the tempered representations were essential because, as he showed
constructively, they are precisely the representations needed to perform the
spectral analysis of LZ(G). (This fact is now understood a priori [CoHH,
Bern3]. It marks a fundamental difference between harmonic analysis on
abelian, or even solvable groups, and semisimple groups.) They have turned
out to be a basic ingredient in several other problems in representation the-
ory, particularly problems suggested by automorphic forms [Arth2, Sata], and
the Langlands classification (see §3.6.4).

Tempered representations are defined in terms of the decay of their matrix
coefficients at oo on the group. The precise definition is in terms of a certain
function = introduced by Harish-Chandra [HaCh10] (see also [Wall2]). In
fact = is a natural function to consider: it is the matrix coefficient (cf.
8A.1.11) associated to the (unique) K-invariant vector in P.S.(1, 1), the
spherical principal series associated to the trivial character of 4,. We can
give an integral formula for Z as follows. Extend the modular function J P,
on P, to all of G by requiring the extended function to be invariant under
left translation by K. Thus define

(3.6.2.1) 5, (kp)=3,(0), keK.peP,
Then E is defined by
(3.6.2.2) Z(g) = /K 57" (gk) dk.

Here we take Haar measure on K to have total mass 1. The reader may wish
to check that this is indeed the K-invariant matrix coefficient of P.S.(1, 1).
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Relevant definitions and formulas are given in §§A.1.11 and A.1.14-16. In
any case, it is straightforward to check that = is both left- and right-invariant
by K, that E(g) > 0, and that Z(1) = 1. Harish-Chandra established
the following asymptotic properties of Z. We observe that by the Cartan
decomposition (cf. formula (A.2.3.2)) the K-bi-invariance of = implies that
it is determined by its values on A , the positive Weyl chamber in A, .

THEOREM 3.6.2.3. (a) For a € Aa’ , and any & > 0, we have the estimates
—-1/2 — —1/2
3y P(a) < E(a) < C,0p 124 g)

for an appropriate constant C, .
(b) Forany ¢ >0,

/ =2 (¢) dg < oo.
G

Actually Harish-Chandra proves more refined estimates than these
[HaCh10, Knap2, Wall2, Vara]; but these statements give the basic flavor
of his results. Statement (b) is often phrased: “ Z belongs to L2+8(G) e

Having = in hand, we may define the notion of tempered representation.
A representation p on the space V is called tempered if all its smooth matrix
coefficients ¢, , (cf. §A.1.11), u € V™, A€ (V)™ satisfy

(3.6.2.4) 9,8 <C, E8)

for an appropriate constant depending on # and v. This is not precisely
Harish-Chandra’s definition, but is equivalent to it [CoHH]. It is also equiv-
alent to requiring the smooth matrix coefficients to be >,

3.6.3. DISCRETE SERIES. Just as tempered representations are essential to
the spectral analysis of LZ(G) for semisimple groups, the discrete series are
essential to understanding tempered representations. Beyond this, discrete
series are a fascinating phenomenon of general harmonic analysis. Also,
discrete series for semisimple groups play a prominent role in the theory of
automorphic forms [BoWa, Lgld7, DeGW]. The definition of discrete series
makes sense for a general unimodular locally compact group G. Let p be
an irreducible unitary representation of G on a Hilbert space # . We call
p a discrete series (or square integrable) if there exist u, v in # such that
the matrix coefficient ¢, (cf. §$A.1.11) belongs to L? (G).

This rather innocent sounding definition has striking implications,
described in the next result. The proof is a pleasant exercise in functional
analysis, originally done by Godement [Godel] (see also [Knap2]).

THEOREM 3.6.3.1. Let p be a discrete series representation of the unimod-
ular locally compact group G. Let p be realized on the Hilbert space # .
Then the following assertions are true:

(i) Every matrix coefficient Py yr U VE Z,of pisin LZ(G).
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(ii) There is a constant d, such that

—— . (u,w)(z,v)
(3.6.3.2) /qu,v(g)%,z(g) dg = T d,

forany u,v,w,z e # . Here ( , ) indicates the inner product in # .
(iii) In particular, for fixed v € 7, the mapping

1/2
— dp ¢
(v, v) v

defines an isometric G-intertwining from # to a subspace of LZ(G). Thus
p is equivalent to a summand of L*(G).

ReEMARKS. (a) Equation (3.6.3.2) is a generalization of the Schur orthogo-
nality relations for finite or compact groups (cf. [HeRo, Knap2, Jaco2], etc.).
For those groups, if Haar measure is normalized to have total mass 1, the
constant d ) is just the dimension of # , also known of old as the degree
of p. In the general case, when /Z is infinite dimensional, d ) is called the
Jformal degree of p .

(b) The equation (3.6.3.2) is reminiscent of a fixed point formula: if u =
v = w = z, then it expresses the integral of 1qou’u|2 as a multiple of (u, u)2 =

lqou’ulz(l) , where 1 denotes the identity element of G. Indeed, formula
(3.6.3.2) has a natural interpretation as a “trace formula.”

With this background on discrete series for general groups, let us explain
for semisimple Lie groups the relation between discrete series and tempered
representations.

THEOREM 3.6.3.3. (a) If G is a semisimple Lie group, and p is a discrete
series representation of G, then p is tempered.

(b) Let P C G be a parabolic subgroup with decomposition P = M AN
as in equation (3.6.1.5). If o is a tempered representation of M, and y €
Adisa unitary character, then the principal series representation P.S.(a, v)
(cf formula (3.6.1.11)) is tempered. (In brief: unitary parabolic induction
preserves temperedness.)

(c) Every irreducible tempered representation of G is a summand of some
P.S.(6, v) as in part (b), where o is a discrete series.

The complete classification of tempered representations, i.e., a description
of the precise decomposition of the tempered P.S.(g, w), and the equiva-
lences between the pieces, was given by Knapp and Zuckerman [KnZu]. Their
results were given a nice orbit method interpretation by Rossmann [Ress2],
as an adjunct to his character formula, to be discussed in Theorem 3.6.3.7.
However, it was known already from results of Bruhat in the 1950s [Bruh] for
the basic principal series that for any ¢ and generic (i.e., for an open dense
set of) y, the representation P.S.(g, y) is irreducible. (It was to prove this
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that Bruhat studied the double coset decomposition now named after him.)
These results were extended by Harish-Chandra to cover the case when P
is nonminimal and ¢ is a discrete series. Hence Theorem 3.6.3.3 gives a
description of “almost all” the tempered representations. In particular, the
representations described by Theorem 3.6.3.3 are precisely the representa-
tions which enter into Harish-Chandra’s Plancherel formula for G.

In sum, Theorem 3.6.3.3 shows that an understanding of tempered repre-
sentations can to a large extent be reduced to an understanding of the discrete
series.

Harish-Chandra [HaCh19-20] gave a description of the discrete series of
a semisimple Lie group. He did so by explicitly constructing their characters,
which he expressed in terms of Fourier transforms of invariant measures on
certain orbits in the dual of the Lie algebra of G, a procedure with obvi-
ous analogies to the orbit method sketched above for nilpotent and solvable
groups, and with Harish-Chandra’s own formula for the characters of com-
pact groups. That the parallel is essentially perfect, so that the characters of
discrete series, and in fact of all tempered representations, can be described
by a close cousin of the formula of Theorem 3.5.6.29, was established by W.
Rossmann [Ressl, 2]. We will describe this in Theorem 3.6.3.7.

Since Harish-Chandra’s classification of discrete series did not actually
produce representations, in the sense of providing some concretely described
spaces with some concretely given G-actions on them, a clamor soon arose
for a “geometrical realization” of the discrete series. A candidate for such a
realization, using «r? -cohomology” and bearing strong analogies to the Bott-
Borel-Weil Theorem (cf. §3.5.5) for compact groups was proposed by Lang-
lands and Kostant [Lgld7, Kost7]. A realization of this sort was established
in stages by W. Schmid [Schm1-3]. Other authors used variations on this
theme to produce similar models for the discrete series (cf. [Hott, OkOz,
Partl, Wall4], etc.). However, all of these constructions depended on Harish-
Chandra’s existence proof via character theory; they did not independently
establish either existence or exhaustion of the discrete series.

In the 1970s a more algebraic approach to problems of representation the-
ory arose, and several purely algebraic constructions of discrete series and
analogous representations were given [EnVa, Part2, Zuck]. The construction
given by G. Zuckerman (see [Voga, Wall2, Knap1]) has turned out to be in
some sense the most natural and has been shown to have numerous pleasant
technical properties. It is now more or less the standard construction, and
has been developed to the point where it can be used to give an independent
proof of the existence of the discrete series [Wall2]. Proof that the construc-
tion exhausts all discrete series, however, still requires character theory. We
describe Zuckerman’s construction in §3.6.5.

Several other, rather different, ways to construct discrete series have also
been developed. A construction of discrete series on the family of “semisim-
ple symmetric spaces”—homogeneous spaces of the form G/H , where G is
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semisimple and H is the identity component of an automorphism of order
2 of G (see [FlJe2, Berg])—was discovered by M. Flensted-Jensen [FlJe2,
Knap2]. This proceeds by giving integral formulas for certain matrix coeffi-
cients of the representations, by means of a beautiful duality between pairs
of semisimple symmetric spaces [FlJe2]. Since a semisimple group G can
be thought of as the semisimple symmetric space G x G/A(G), where

AG)={(g,8):g€G}

is the diagonal in G x G, Flensted-Jensen’s construction yields discrete se-
ries for G as a special case. Flensted-Jensen’s methods have been extended
and to some extent completed by Oshima [Oshil, 2], using the theory of
hyperfunctions and holonomic systems.

Another, again quite different, construction of the discrete series using an
index theorem for covering spaces was given by M. Atiyah and W. Schmid
[AtSc].

Let us turn now to a concrete description of discrete series. First, we
should note that not all semisimple groups have discrete series. A major
insight of Harish-Chandra was that discrete series should be associated to
compact Cartan subgroups. A Cartan subgroup of G is a subgroup whose
complexified Lie algebra is a Cartan subalgebra of g .

THEOREM 3.6.3.4. Let G be a semisimple Lie group and K C G a max-
imal compact subgroup. Then H has discrete series if and only if rank K =
rank G, i.e., iff a Cartan subgroup of K is also a Cartan subgroup in G iff
G has a compact Cartan subgroup.

Thus, for example, the rank of SL, (R) is n — 1, and that of its maximal
compact subgroup SO, is [n/2]. These are equal only for n =2, so for n >
3, SL,(R) has no discrete series. Since SL, (R) occurs as a factor of the Levi
component of maximal parabolics of many groups (e.g. of 0, ., Sp,,(R)),
this very substantially cuts down on the number of parabolic subgroups one
must worry about in the context of Theorem 3.6.3.3. Also, complex groups
always have their compact real form as a maximal compact subgroup, and
this always has rank equal to % the rank of the full group (considered as
a real Lie group), so complex groups have no discrete series. As a result,
the only tempered representations for complex groups are constituents of the
standard principal series induced from characters of the minimal parabolic
subgroup. With hindsight we may say that it was this circumstance that
permitted the early determination by Gelfand-Naimark [GeNa] and Harish-
Chandra [HaCh5] of the Plancherel formula for complex semisimple groups.

Other examples are: Sp,,(R) has maximal compact U, , and both have
rankn, so Sp,, (R) has discrete series; Op’ g has rank [?%4] , while its maxi-
mal compact O, x O, has rank [§]+[4],so O, has discrete series if and
only if at least one of p and ¢ is even. In this connection, we may note
that if p is odd, then Op’ | » like complex groups, has only the standard prin-
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cipal series as tempered representations, and hence has a simple Plancherel
formula, analogous to that for complex groups [Wall3].

Following Theorem 3.6.3.4, consider a semisimple Lie group G contain-
ing a compact Cartan subgroup 7. The discrete series of G are then
parametrized, more or less, by the characters of 7', in a fashion similar
to the description given in §§3.5.3-3.5.5 for the case of G compact. How-
ever, the “more or less” hides several tricky points, of which we will try to
give some idea.

We will describe the discrete series by associating to them coadjoint orbits.
This gives a formula for their characters, which is the original description
given by Harish-Chandra [HaCh19, 20]. The refinement to the orbital de-
scription is due to Rossmann [Ressl]. For convenience, we will restrict our
discussion to connected groups. The results can be extended to more general
G, but at the expense of substantial technical fussing.

Let G be a semisimple group, connected and without center. Let K C G
be a maximal compact subgroup of G and T C K a maximal torus (Cartan
subgroup). We assume 7 is also a Cartan subgroup of G; this means (since
G is connected) that T is its own centralizer in G. Let g, k, and t be the
Lie algebras of G, K, and T respectively, and let g*, k™, and t* be the
duals of g, k, and t. Via the Killing form (cf. equation (2.8.8)) on g, we
can identify g with g*, k with k™, and t with t*. We will not take full
advantage of this identification, however, but merely use it to consider t*,
which naturally is a quotient of g*, as a subspace of g*.

Let N(T) be the normalizer of 7 in G. In fact, N(7) C K. Under
standard technical assumptions [GaVa; Vara, p. 192)] which always hold if
G is connected, the action of N(T) on t (or t*) factors through the Weyl
group W of t in K. We recall from §§2.9 and 2.10 that W is generated
by reflection in certain hyperplanes H  C t. These are the hyperplanes or-
thogonal to the roots a of k relative to t; we will refer to them as K -root
hyperplanes or compact root hyperplanes. The complement of the compact
root hyperplanes is called the set of K -regular elements. Denote this set by
t k- The connected components of t, x are open convex cones. These are
permuted simply transitively by W . The closure of any one of them is called
a K-Weyl chamber.

By duality, W actson t* also, and we use similar terminology to describe
this dual action. The hyperplanes in t* dual to the H_ will be denoted by
H.

aSince t is a Cartan subalgebra of g, its complexification t. is likewise
a Cartan subalgebra in g, the complexification of g. In this context too,
we have a Weyl group, which by rather flagrant abuse of notation we will
indicate by W, . It is not hard to show that W preserves t, considered
as a real subspace of t. = t® it. This is because t is characterized as the
real subspace of t. on which the roots of t. in g, take on pure imaginary
values. As a group of linear transformations of t, the group W, contains
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W, and is also generated by reflections in hyperplanes. These hyperplanes
will still be denoted by H_, where now « is a root of t. in g.. If H,
is a reflecting hyperplane of W, but not of W, we call H, a noncompact
root hyperplane. The complement of all the H,, compact or noncompact,
is the set of G -regular elements, or just regular elements, denoted t, . We
define a notion of Weyl chamber for W, as for W . These are called G-
Weyl chambers. Evidently each K-Weyl chamber contains several G-Weyl
chambers. (To be precise, #(W./W) of them.)

Again, we note we can dualize the above discussion to t*.

We can consider elements of t* as defining unitary characters on t in the
usual way: if A € t*, the associated character X, of t is given by

2miA(t
e t(),

2,0 = tet.

Consider the exponential map exp: t— T . Since 7' is commutative, exp is
a group homomorphism. We call A € t* integral, or T-integral if we need
to specify T, if x, factors through exp to define a character of 7. As
in §3.5.5, the set of integral 4 form a lattice in t*, identified via the map
A= x,0 exp"1 to the Pontrjagin dual T of T. Hence we denote it by 7.

Let X be the set of roots of t. in g.. Elements of X are the linear forms
defined by eigenvectors for t. acting on g. via ad. As such they define by
exponentiation characters of T, which we can then identify with elements
of T C t*. As we have mentioned, the roots are elements in t’é which most
naturally take imaginary values on t. To get them to be elements of t*, we
have essentially multiplied them by i. (Note the i in the definition of y;, .
This is a different convention from §3.5.5, where we did not multiply by i,
instead we considered that T C it C te )

Let € Ct be a G-Weyl chamber, and let 2‘;, C X denote the set of roots
which take positive values on % . We set

1
(3.6.3.5) Pe =75 > a

aGE%,

Although p.. clearly depends on the choice of %, the difference Pz — Pg
for different chambers &, and % is, by standard results [Bour, Serrl],
sum of elements of . Hence the coset T + pg of T in t* is independent
of the choice of % . We denote itby T + p.

The final ingredient we need before giving a precise description of the
discrete series is an open set U C g, which is connected, contains the origin,
and is such that the exponential map exp: U — G is a diffeomorphism onto
its image. There is a natural maximal choice for U [Wall2] but we will not
try to describe it. Let J be the Jacobian relating Haar measure on G with
the push-forward via exp of Lebesgue measure on g:

(3.6.3.6) / ” f(expx)d(expx)=/Uf(x)J(x)dx, f€ Cfo(epr).
exp



A CENTURY OF LIE THEORY 215

Here the measures dg = d(expx) and dx are the appropriate Haar mea-
sures. Clearly J is smooth, conjugation-invariant, and positive, so it has a
well-defined positive square root J 1/2 , which also is smooth and conjugation-
invariant.

THEOREM 3.6.3.7 (Harish-Chandra [HaCh20], Rossmann [Ressl]). (a)
Let © be a discrete series representation of the connected semisimple Lie
group G. There is a coadjoint orbit @, C g" such that the character ©, of
n may be computed from the Fourier transform of the invariant measure on
@, by means of the following formula:

©,(/) = trace (/) / ([ sesons T dx )

Here U is the neighborhood of 0 in g selected just above, f € Cc (expU),
and dA is the appropriately normalized invariant measure on O, .

(b) The orbit &, intersects t*. The intersection @, Nt consists of a W-

orbit of points in T+ p, and is contained in t:’ G- The mapping
n—0,—0,N t

egablishes a bijection between the discrete series of G and the W-orbits in

(T+p)nt; ;.

REMARKS. (a) The parallel with the compact case (cf. §3.5.6) should be
clear.

(b) Harish-Chandra [HaCh14-18, Vara, Wall2] showed that the character
®, of 7 (in fact of any irreducible representation of G ) was given by inte-
gration against a locally L' , conjugation-invariant function, analytic on the
regular set. Furthermore, he gave an explicit formula for this function on
T . We will describe his formula. Fix an element A € &, N t*', and let € be
the G-Weyl chamber containing A. Define the “denominator function”
(3.6.3.8) D= I Gtop = 20p) = D s80()xyp -

aGZ} SEW
Here sgn is the standard sign character of W . Although D depends on %,

the dependence is weak: the D associated to a different chamber equals this
D up toa + sign.

The character ©, is expressed, as a function on 7', by the formula

ZseW Sgn(S)Xs(,l)
D .

Some words about 1nterpret1ng this formula may be helpful. Because 4 is
in T+ p , which may not equal T,it may happen that neither the numerator
nor the denominator defines a functlon on T (i.e., factors through exp:t—
T). However, the quotient may also be written as

2sew B Xsurp)—p

(3.6.3.9) e, =+

91;=:I: > .U+P=/1,
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and both the numerator and denominator of this expression do factor to 7.
In particular, ©, factors to 7.

(c) The analogy between formula (3.6.3.9) and the Weyl character formula
(cf. (3.5.4.24)) is clear. In fact, although the derivation of formula (3.6.3.9)
is very substantially more difficult than that of (3.5.4.24), several key features
of the argument are parallel. However, it should be noted that the denomina-
tor function D involves antisymmetrization over the “complex Weyl group”
W, and so has zeros along all the H,, a € X, whereas the numerator of
formula (3.6.3.9) involves only a sum over the “real Weyl group” W, and
cannot be expected to vanish on the noncompact root hyperplanes. Thus the
character ©_ will have singularities.

(d) As in the case of compact groups (cf. §3.5.6), the numerator in formula
(3.6.3.9) is provided by @ , the Fourier transform of the orbital integral, and
the denominator D is provided by the Jacobian factor J 1z

(e) The explicit formula (3.6.3.9) is due to Harish-Chandra [HaCh19, 20].
In the course of his argument, he established a less precise version of the
orbital integral formula for ©_ given in Theorem 3.6.3.7: the expression for
©, was allowed to be a linear combination of the orbital integrals coming
from coadjoint orbits through the full W-orbit W,(4), rather than a single
orbit. The more refined result, that only one orbit is involved in ©,, was
established by Rossmann [Ross1]. The key step in Rossmann’s analysis was
an analog for noncompact G of Theorem 3.5.6.8.

There is a story that Harish-Chandra had considered whether a single-
orbit expression like that of Theorem 3.6.3.7 might be valid, but was led to
abandon such a hope by erroneous computations for the example of SL,(R).
If this is true, it gives a rare instance where Harish-Chandra’s intuition, which
guided him so well through the deep forest of semisimple harmonic analysis,
led him astray. Particularly for SL,(R), the distinctive analytic features
of the various types of discrete series representations are so well mirrored
by the geometry of the different type of elliptic coadjoint orbits, that the
one-representation/one-orbit hypothesis seems, at least with hindsight, very
plausible.

(f) The correct normalization of the invariant measure d4 on &, is given
by the same universal normalization as in the nilpotent case, defined intrinsi-
cally in terms of the symplectic structure on &, , as Kirillov [Kiri] suggested
should hold.

(g) Rossmann [Ross2] has also shown that an orbital integral formula like
that of Theorem 3.6.3.7 is valid for all tempered representations. In this gen-
erality, the bijectivity of the correspondence between representations and or-
bits breaks down. Sometimes different representations have characters which
agree near the identity in G, and so correspond to the same orbit, and some-
times several orbits are needed to give the character of one representation.
(This latter situation is exceptional, however.) These phenomena can already
be seen in SL,(R) [Ross2].
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(h) Duflo and Vergne [DuVel] have showed that the orbital picture yields
a nice interpretation of the Plancherel formula, yielding a sort of “Poisson-
Plancherel” formula for G, partaking of the nature of both the classical
Poisson and Plancherel formulas.

(i) The character formula (3.6.3.9) suggests what the restriction to K of
the discrete series representation 7 should look like. We have observed that
the numerator of (3.6.3.9) looks like the numerator of the Weyl character
formula for K, while the denominator is the Weyl denominator for G,
which contains the Weyl denominator for K as a factor. Decompose

(3.6.3.10) Te =2/ UZ,

where the Z: are the roots of t. acting on k. (the compact roots), and Z;
are the remaining roots (the noncompact roots). Then

(3.6.3.11) Dy = [T oy = 2_ap2)
aEZ:'

is the Weyl denominator for K, and

(3'6312) Dn = H (Xa/z - X—a/Z) == ( H X—a/2> ( H (1 - XQ))

194 a€Z} a€X}

is the quotient D/D; . In analogy with the geometric series

we may formally expand

-1
(3.6.3.13) ( [Ta- m) =Y 2,1,

aEZ:
where y is any weight of the form }° ;.7 o, with nonnegative integers
n,, and p,(7), the “partition function” for Z: , is the number of ways of
expressing y as such a sum. Note also that decomposition (3.6.3.10) induces
a parallel decomposition (cf. formula (3.6.3.5))
(3.6.3.14) Pe =P.+ P,
With this notation, we can write [], .5+ x_, =X, - It is easy to see that

D, is invariant under W, the Weyl group of K. Thus, for any s € W, we
may write formally

D,=x_,, (32,0) x50 "

Plugging this in to expression (3.6.3.9) gives us

(3.6.3.15) (D™ Y sens > PN Xsaip -
SEW Y
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If we count the number of times that a given K-dominant weight x4 occurs
in this sum, we obtain

(3.6.3.16) (Z (Z (sgns)p, (sp—A— pn))> chy (1),

UEB, \SEW

where

sgn(s)x,(x)
che(A) =) D)—Ks
SEW
is the character of the representation of K, of highest weight u—p_ . Expres-
sion (3.6.3.16) leads us to suspect that the multiplicity of the representation
of K with highest weight x would occur in the discrete series representation
7 with multiplicity

(3.6.3.17) > (sgns)p,(s(u+p,) — 4 - p,)-

SEW
This formula is indeed true [HeSc1, Knap2, Wall2]. It is known as Blattner’s
formula. A cohomological explanation and a generalization was found by
Zuckerman in the context of his derived functor construction [Knapl, Vogal,
2, Wall2] (cf. §3.6.5).

(j) Study of the geometry of Weyl chambers shows that the norm (with
respect to the Killing form) of A4+ p, +7 is always greater than the norm of
A+p, if y # 0. Hence the only term in the sum (3.6.3.15) which yields Xiep,
is y = 0. It follows from Blattner’s formula (3.6.3.17) that the representation
of K with highest weight A+ p, — p, = A+ pg — 2p, occurs in the discrete
series 7 of formula (3.6.3.9) with multiplicity one. This K-representation
is known as the lowest K-type of m. Vogan [Voga2, 4] has shown that every
representation of G contains a K-type, which is lowest in a certain sense,
with multiplicity one.

(k) Even more than in the Weyl character formula for compact groups,
one sees the necessity for various “p shifts” to make parameters match up,
particularly for the lowest K-type. To make sense of these, one should keep in
mind that what is controlling everything is the infinitesimal character, which
is computed by a p-shift coming from the Harish-Chandra homomorphism
(cf. Theorem 3.5.5.23). In discussing lowest K-types, we must deal with the
p-shifts for both K and G.

3.6.4. CLASSIFICATION. In the 1970s two classifications of the irreducible
admissible representations of a semisimple Lie group were given, one by R.
Langlands [Lgld4], and another by D. Vogan [Vogad]. Somewhat earlier, a
classification of the representations of complex groups had been given by
Zhelobenko [Zhel2] and Parthasarathy-Rao-Varadarajan [PaRV]. Langlands’
classification was similar in flavor. Although the classifications of Langlands
and Vogan seem to be based on rather different principles—Langland’s on
the asymptotic behavior of matrix coefficients, and Vogan’s on the behavior
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under restriction to the maximal compact subgroup K, in particular the
existence of a “lowest K-type”—they were successfully combined by Vogan
in [Voga2]. The result is a description of a standard realization of a given
irreducible admissible representation, supplemented by information about its
restriction to K .

In [BeBe], J. Bernstein and A. Beilinson announced a classification based
on another circle of ideas. In particular it relies heavily on the theory of
“D-modules”—modules for the sheaf of differential operators on a manifold.
Despite its exotic origins, the Bernstein-Beilinson classification has a strong
geometric flavor that gives it considerable appeal. The project of comparing
and coordinating the features of the three classification schemes has been
pursued in recent years by a group including H. Hecht, D. Milicic, W. Schmid,
and J. Wolf [HMSW].

In this section we will give a brief description of the Langlands classifica-
tion, which essentially describes representations in terms of standard embed-
dings in the principal series.

Let G be a semisimple Lie group, and let P C G be a parabolic subgroup
(cf. §A.2.4). Write P = MAN as in formula (3.6.1.5). The abelian group A4
acts on the Lie algebra n of N by the conjugation action Ad 4. Under this
action n decomposes into a direct sum of eigenspaces

(3.6.4.1) n=Yn, aeX'4,n),

where the o are the roots of 4 acting on n:
(3.6.4.2) Ad a(n) = ofa)n, acAd,nen,

Evidently from their definition, the o are homomorphisms from A4 to cx.
In fact Ad A4 is a real-diagonalizable action, so that the o have images in
R™™ . Write

(3.6.4.3) A" ={aed:a(a)>1, all a}.

Note that A" is a closed semigroup of A, with nonempty interior 4.
Dually, write

(3.6.4.4) A ={wed :|y@)|>1, allac 4™}

Note that, in contrast to 4™, our definition makes (/T C)+ an open semigroup

in 4€. This slight inconsistency will reduce by a little the total amount of
notation that we need.

THEOREM 3.6.4.5 (Langlands classification). Fix a minimal parabolic sub-
group P, inside the connected semisimple Lie group G. Let P be a parabolic
subgroup containing P, with Langlands decomposition P = MAN. Let o
be an irreducible tempered (in particular, unitary) representation of M , and
Ve (/T C)+ . Then the principal series representation P.S.(o, w) has a unique
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irreducible quotient L.Q.(o, ). Each irreducible admissible representation
of G is isomorphic to a unique L.Q.(c, v).

REMARKS. (a) For generic y , more specifically, for y not satisfying cer-
tain integrality conditions [SpVo], the representations P.S.(¢, ) are irre-
ducible, i.e., L.Q.(g, ) = P.S.(¢, v). However, the nature of L.Q.(g, v)
can change drastically as y varies. The difficulty of describing L.Q.(o, ¥)
more explicitly than is done in Theorem 3.6.4.5 is one reason why various
outstanding problems, e.g., the classification of the unitary dual, remain un-
solved. Thus while Theorem 3.6.4.5 gives us a place to put each representa-
tion, it does not provide us with a complete picture of the structure of the
representations.

(b) A version of Theorem 3.6.4.5 first appeared in [Lgld4]. Its proof relied
on results of an unpublished manuscript of Harish-Chandra on asymptotic
expansions of matrix coefficients [HaCh13]. Harish-Chandra’s results were
refined and simplified by several authors; we refer in particular to [CaMi].
Relatively streamlined and complete accounts of these matters, as well as
most of the rest of semisimple representation theory, are available in the
texts [Knap2] and [Wall2].

(c) In fact, the term “Langlands classification” for Theorem 3.6.4.5 is
something of a misnomer. Langlands’ goal in [Lgld4] was a different clas-
sification (see §4.2).

(d) In remark (i) following Theorem 3.6.3.7, we noted that if ¢ is a dis-
crete series representation, then the restriction of ¢ to the maximal compact
subgroup K contains a certain minimal K-type with multiplicity one. Vogan
[Vogad] generalized the notion of minimal K-type to apply to any irreducible
representation, and showed that his minimal K-type always occurs with mul-
tiplicity one. The K-module structure of the representations P.S.(g, v) is
independent of y, so they all have the same minimal K-type u, . Vogan
shows [Voga2] that u_ survivesin L.Q.(g, y). This additional information
about L.Q.(c, y) allows one to characterize it as a subquotient of a broader
class of principal series representations.

ExAMPLE. Parametrize the spherical principal series of SL,(R) by A€ C,
as in formula (3.6.1.8). Then the unitary principal series, which are all tem-
pered, lie on the imaginary axis. They are all irreducible, and the repre-
sentations labeled by A and by —A are mutually equivalent. The repre-
sentations associated to P, in Theorem 3.6.4.5 are those in the right half
plane. All are irreducible, except for A = 1,3,5,7,.... For these, the
Langlands quotient is the finite-dimensional representation of dimension A
(cf. §3.1). The remaining constituents (there are two) of P.S.(1, 2m + 1)
are discrete series, hence get counted among the tempered representations.
The story is similar for the nonunitary principal series P.S.(€, a ) (€ here
being the nontrivial character of M, ; cf. formula (3.6.1.8)), except that
P.S.(¢, 1), the point of symmetry of the unitary principal series, reduces
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into two pieces, and the points of reducibility in the right half plane are at
the even integers A = 2,4, 6, 8, ..., the Langlands quotient again being
the finite-dimensional representation of dimension 4.

The representations P.S.(€, Zl’l) for Re A < 0 are contragredient to
P.S.(¢, &_’1) (cf. §A.1.10). If P.S.(¢, &’1) is irreducible, it is equivalent to
P.S.(¢, &—’1) . If it is reducible, it has the same constituents as P.S.(¢, Zz_'{) ,
but the finite-dimensional representation is now a subrepresentation, and the
two discrete series are quotients.

3.6.5. DERIVED FUNCTOR MODULES. Part of the fascination of semisimple
harmonic analysis is the strong interaction of algebra and analysis that it
affords. After his initial, heavily algebraic, papers on foundational issues
in representation theory, Harish-Chandra’s methods became more and more
analytic, culminating in the construction of the discrete series via a deep
study of character theory [HaCh13-20]. Then, beginning in the late 1960s,
the work of Dixmier [Dixm1], Kostant [Kost8], and the Gelfand school (cf.
[BGG1-3]) reemphasized the algebraic aspects of the theory.

In the late 1960s, there had been efforts, by W. Schmid [Schm1-3], and
others [OkOz, Hott, Partl], to “realize the discrete series,” i.e., construct spe-
cific vector spaces on which a semisimple group could act in a natural way,
and such that the resulting representation of G was a given discrete series
representation (cf. §3.6.3). G. Zuckerman, considering Schmid’s work from
the more algebraic point of view, invented a flexible and fruitful purely al-
gebraic method for constructing representations. Parthasarathy [Part2] had
an idea for a similar construction, and Enright-Varadarajan [EnVa] also pro-
posed an interesting, though conceptually less transparent, algebraic method
for constructing representations. After several simplifications and refine-
ments [Vogal, EnWa, DuVe2, KnVo, Wign2, Wall2], Zuckerman’s method,
which has become known as the “derived functor construction,” has become
a standard tool for constructing representations. In particular, it can be used
to give an a priori construction of the discrete series [Wall2]. (Proof of
“exhaustion”—that all discrete series are so realized—still, however, requires
analysis, especially character theory.) It also yields other interesting classes of
nontempered unitary representations, €.g., the representations with nontrivial
(g, k)-cohomology [VoZu]. We will give a brief description of Zuckerman’s
idea. A nice overview is given in [Vogal], a leisurely introductory treatment
is in [Knap2], and detailed expositions are given in [Voga2] and [Wall2].

The inspiration behind the derived functor construction is epistemolog-
ically interesting: it consists in taking seriously what might have seemed
merely a technical convenience—the notion of (g, K)-module. The general
goal of the algebraic approach is to replace a G-module by a suitable % (g)-
module which can serve as its proxy, i.e., that will mirror its essential features.
A first guess might be the subspace of smooth vectors (cf. §A.1.13) but this
is of uncountable dimension, hence too large to be studied algebraically. At
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the outset, however, Harish-Chandra had shown [HaCh2] that if p is a t.c.i.
(8A.1.7) (or quasisimple) irreducible representation of a semisimple group G
with maximal compact subgroup K on a Banach space V', then the subspace
Vi of K-finite vectors (vectors contained in finite-dimensional, K-invariant
subspaces) is invariant under the action of the Lie algebra g. Hence V, is
a module for g. It is also obviously a module for K, and the two module
structures are compatible in some obvious ways:

(i) The differential of the action of K is obtained by restric-

tion of the g-action to the Lie subalgebra k C g correspond-
(3.6.5.1) ingto K.

(ii) K normalizes g inside End V} , and conjugation by K

in End ¥V} yields the usual adjoint action Ad K on g.

These properties were enshrined by Gelfand [Gelf] in a formal definition
of what is now usually called a (g, K)-module. Our space V} also has the
property that each K-isotypic subspace Vu , WE K , is finite dimensional. A
(g, K)-module with this property is called an admissible (g, K)-module or
Harish-Chandra module.

For a given irreducible representation of G on V, the associated Harish-
Chandra module V}, is convenient to work with. For example, for SL,(R) it
is an easy, pleasant exercise to determine all possible irreducible (sl,(R), SO,)
modules, and to check which ones could carry an invariant inner product.
This was the method of Bargmann [Bargl] at the very beginning of semisim-
ple representation theory. Further, Vj captures much of what we want to
know about V : for example, Harish-Chandra showed [HaCh3] that V' could
be unitary if and only if Vj carries an invariant positive-definite Hermitian
form, and, in that case, V), determines V' up to unitary equivalence.

Thus, one might propose Harish-Chandra modules as a technically con-
venient class of g-modules with which to work in order to study algebraic
aspects of representation theory. However, (g, K)-modules also appear to
be rather awkward from certain points of view. Some people might be put
off by the loss of symmetry entailed by the choice of a particular maximal
compact group K. A serious technical problem is presented by induction.
Induction is a basic method for constructing representations, so we would
like to have an algebraic version of it. There is in fact a standard notion of
induction in the category of associative algebras, defined in terms of tensor
products. Thus suppose g is a Lie algebra, h C g is a subalgebra, and V is
an h-module. Define

(3.6.5.2) indi V = %(g) ®y ) V-

We recall [Jaco2] that 7/(3)@’?/(11) V is the quotient of the usual tensor product
% (g)®V by the subspace spanned by tensors of the form xy®v-x®y(v),
xe?(@g),ye#h), veV. (In fact, it suffices to take y € h.) The action
of Z(g) on indi‘l V 1is the push-down of left multiplication on Z/(g) .
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A variant notion, more or less dual to (3.6.5.2), also exists. It is some-
times called production, (though some feel the terminology for induction and
production should be reversed) and is defined by

(3.6.5.3) proﬁV = Hom, (% (g), V).

Here the action of h on Z/(g) is via multiplication by h on the left. The
action of g on proj(¥) is via multiplication on the right in #(g). If M
is a subgroup of G, whose Lie algebra m is contained in h, and V is an
(h, M)-module, we let M act on proﬁV by the recipe

m(f)(u) = m(f(Ad m(u))), meM,feproﬁV,ue?/(g).

We then replace proﬁV by the subspace of its M-finite vectors and so obtain
a (g, M)-module.

Both induction [Wall2, Knap1] and production [Vogal, 2, Knap1], are used
in accounts of derived functor modules. Other conventions concerning the
derived functor construction also vary from author to author, necessitating
an annoying, if in principle straightforward, translation process to compare
results. We follow the conventions of [Vogal]; in particular, we use produc-
tion.

The production process (3.6.5.3) converts h-modules to g-modules, but it
is unlikely that it will yield modules which are spanned by K-finite (or, what
is more reasonable to discuss at this stage, k-finite) vectors, or which even
contain any k-finite vectors at all. This would seem to be a serious drawback
of the (g, K)-module formalism. However, Zuckerman saw how to make a
virtue of necessity, and converted this seeming liability into a construction
method that is subtler than production, but still is fairly manageable.

The most obvious way to associate a (g, K)-module to a g-module is to
look at the submodule of % (k)-finite vectors, then exponentiate to get an
action of K on this submodule. (There is further fussing necessary if K
is not connected and simply connected [Vogal, 2, Knapl, Wall2]. We will
ignore this fussing. Thus we will actually be discussing (g, k)-modules (the
definition of which is hoped to be obvious) rather than (g, K)-modules.)
This procedure, however, may well result in the trivial module. Zucker-
man observed, however, that the process of passing from a g-module to the
(g, k)-module of k-finite vectors is a functor, and moreover, it is a left-exact
functor. Thus we have the possibility of taking its (right) derived functors;
and even if the module we start with has no K-finite vectors, one of the higher
derived functors may be nontrivial. This does in fact happen in interesting
cases.

Thus if ¥ is a g-module, we can define

(3.6.5.4) T(V)={veV:dimZ&)(v) < «}.

(As noted above, one must give a slightly more complicated definition of I"
if K is not connected or not simply connected.) The derived functors of T’
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will be denoted I"". A curious point about I" is that, while I" is a functor
on g-modules, it depends only on the k-module structure of these modules.
Further, we can express I' in terms of k-fixed vectors in certain auxiliary
modules, viz.

(3.6.5.5) T =Y (Ves) oo
o€k

Here k is the collection of irreducible finite-dimensional representations of
k—the same as K if K is connected and simply connected—and (V ® a*)k
indicates the k-invariant vectorsin V ® ¢" .

Since formula (3.6.5.5) expresses I'(V) in terms of the functor of K-fixed
vectors, it suggests the I"" should be expressible in terms of the derived func-
tors of the k-fixed vector functor, which is Lie algebra cohomology [BoWa,
Jacol, Knapl]. This is not immediate, since the construction of derived
functors depends on injective resolutions, and the notion of injectiveness de-
pends on the category in which one is working. However, we can construct
injective (or projective) resolutions of g-modules with injective (or projec-
tive) modules of the form Hom(#Z(g), Y) (or Z(g) ® Y), where Y is a
g-module. Since #Z(g) is free as a % (k)-module, by the Poincaré-Birkhoff-
Witt Theorem [Jacol, Serr2, Hump], one can check that these are injective
(or projective) as k-modules also. It follows that

(3.6.5.6) r'V)=~) H'(k,Veoc)®o,
ock

where H'(k, X) is the ith Lie algebra cohomology of the k-module X .

There is also a relative version of (3.6.5.6). Suppose we are given a sub-
algebra m C k, and we start with a g-module V' which is already m-finite
(a (g, m)-module). Then it is appropriate to work inside the category of
m-finite g-modules, and the relevant derived functors of the k-fixed vector
functor are the relative Lie algebra cohomology groups [BoWa, Knapl]. Thus,
if V is an m-finite g-module, or a (g, M)-module for some m C k, then

(3.6.5.7) r'v)~) Hk,m,Ves")®0,

o€k
where H'(k, m, X) is the ith (k, m)-relative cohomology group of the m-
finite k-module X . .

This describes the structure of I'(V) as a k-module, but of course our
interest in it is as a g-module. A simple observation [EnWa, DuVe, KnVo,
Wign2] allows this to be done simply. Note that, if V' is a k-module, and
X is a finite-dimensional k-module, then

(3.6.5.8) TXeV)~XeI(V).

In fact, this isomorphism is a natural equivalence of functors. Further, ten-
soring with X is exact. It follows easily that

(3.6.5.9) 'xeV)~xeI'W),
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and that this also is an equivalence of functors, i.e., this isomorphism is
natural.
Now suppose V' is a g-module. This means we have a mapping

(3.6.5.10) gaViy,
ux ®v) =x(v), xeg,vev.

Clearly the mapping u# of (3.6.5.10) determines the g-module structure of
V . Furthermore, the fact that u defines a g-module structure on ¥ can be
expressed solely in terms of u: we should have the identity

(365.11)  ulx, ® u(x, ®v)) — u(x, ® u(x, ®)) = u(lx, , %] @ V)

as mappings from geg® ¥V to V. Combining these remarks with the previ-
ous paragraph, we see thgt the g-module structure (3.6.5.10) on V' induces a
g-module structure on I''(V) forall i. Itis very plausible that this g-module
structure is the one that should be carried by I''(V), and it is indeed so (cf.
references preceding (3.6.5.8)).

Now let us introduce the modules to which we wish to apply the r.
Consider x € k. Let 1 be the centralizer of x in g. The complexification
I is a Levi component of a parabolic subalgebra of g.. More precisely,
since x isin k, ad x will act on g. with purely imaginary eigenvalues. Let
n* C g. be the sum of the ad x eigenspaces with eigenvalues with positive
imaginary part, and let n~ be the complex conjugate of n*, the sum of
ad x-eigenspaces whose eigenvalues have negative imaginary part. Then

(3.6.5.12) go=n ®l.on’

and q = 1. ® n* is a parabolic subgroup of gc- Let 6 be the Cartan
involution on g: the automorphism of order 2 whose fixed point set is k
(cf. §A.2). Since x € k, it is clear that 1 and n™ are invariant under 6. The
parabolic subalgebra q is therefore called a 0-stable parabolic subalgebra.

Let g=1.® n' be the f-stable parabolic subalgebra defined by x € k, as
above. Let m = dimn* . The adjoint action of 1, on n" gives rise to a one-
dimensional action of 1. on A™(n"), the top exterior power of n* . Denote
by 2p, the weight in 1 defined by A™(n"). Note that 2p, is a formal
analog of the modular function of a real parabolic subgroup (cf. §A.1.15 and
formula (3.5.5.16)) and we use it in the same way: to normalize induction
by twisting with p before induction (cf. equation (3.6.1.3)). Let C ’. be a
one-dimensional module on which 1. acts by the weight p. (In some sense,
C, = “(A"@")"* )

Let Z be an (1, 1nk)-module. Extend by complex linearity the action of
1 to 1. Extend the action of 1 to an action of q by letting n" act trivially.
Define

(3.6.5.13) #'(Z) =T (profe(Z ® C anp)> 20
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Here the sub-(k N /) means the submodule of (k N /)-finite vectors. The
A’ are functors which transform (1, Ink)-modules into (g, k)-modules (or,
more carefully done, (1, LN K)-modules into (g, K)-modules). The R’ (Z)
are the derived functor modules, and the functors %’ are often referred to
as cohomological induction. The usual yoga about derived functors [Jace2,
Lang3] shows that if

(3.6.5.14a) 02 -Z2-2"-0

is a short exact sequence of (1, 1N k)-modules, then the %’(Z) can be or-
ganized into a long exact sequence
(3.6.5.14b) B (2)>F 2" - B2 B2) .

Further, the %’ are compatible with the Harish-Chandra homomorphism
(cf. §3.5.5). Suppose Z has an infinitesimal character; that is, suppose there
is a homomorphism

AZ#%(0)—-C

of the center of the enveloping algebras of 1, such that u(z) = A(u)z for
ue Z#%(l) and z € Z; or, in other words, Z Z(1) acts on Z by scalars.
Then the #’(Z) will also have an infinitesimal character (independent of
J ), and this character is determined by the Harish-Chandra homomorphism
(cf. Theorem 3.5.5.23). Precisely, if p : 2% (g) — Z #(l) is the Harish-
Chandra homomorphism, then the infinitesimal character of the #’(Z) is
Ao p. This is obvious for ﬂO(Z ), and follows for j > 0 by an argument
similar to that used in the current proofs of Theorem 3.5.5.20.

One can also show that %’ takes finite-length modules to finite-length
modules, and Harish-Chandra (i.e., admissible) modules to Harish-Chandra
modules. _

The most interesting question, of course, is when are the #’(Z) nonzero.
Because the %’ are computed, at least as k-modules, in terms of relative
(k, I N k)-cohomology as per equation (3.6.5.7), and since the standard
complex [BoWa, Knapl] for computing relative cohomology has length
dim(k/kN1), a first conclusion is that #’(Z) = 0 if j > dim(k/(kN1)).
However, a stronger result holds. Observe that

(k/(kN1))e =~ (keNn') @ (ke NM7).
Thus
dim(k/(kN1)) = 2dim(k. Nn" ) = 2dim(k/ (ke N q)).

The modules we are dealing with are defined in terms of the production
constructions as described in equation (3.6.5.3). For produced modules, one
can construct a special resolution (see [Wall2, §6.A.14] for the analog for
induction) which implies they have relative cohomology only in a restricted
range. Precisely, the relative (k., (kN1).)-cohomology of a (k., (kN1)e)-
module produced from k. Nq will vanish in degrees above

dimk/(ke N @) = 4 dim(k/kn1).
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The modules with which we are working have the form proﬁC(Z ® C P ).
q

Their restrictions to k are not precisely of the form protcan, but they
have a filtration by submodules whose quotients are of this form, and this is
sufficient to establish the vanishing.

THEOREM 3.6.5.15. #’(Z) =0 for j > dim(ko/(keN4q)).

On the other hand, relative Lie algebra cohomology features a version of
Poincaré duality [BoWa, KnVo, Wall2]. This allows one to show, under a
certain positivity condition [Knap1, Vogal, Wall2] on the infinitesimal char-
acter of Z, that #’(Z) = 0 also for j < dim(k./(ke N q)). Thus, under
these hypotheses, we have %’ (Z) =0 except for j =8 = Jdim(k/(kNl)).
The function, roughly, of the positivity condition is to make the ((k N 1)-
finite vectors in the) produced modules progC(Z ® C ) irreducible, or at
least to guarantee that these modules carry nondegenerate Hermitian forms
(the Shapovalov form [Vogal, 3]); this then guarantees that their Hermitian
dual modules are again produced modules of the same sort, so that Theorem
3.6.5.15 applies to them too. Then Poincaré duality, which relates the Her-
mitian dual of %#’(Z) to T*™/ ofa module constructed from the Hermitian
dual of Z , guarantees vanishing of %’ except for j = S.

On the other hand, it is clear that some kind of condition on Z is needed
to guarantee vanishing of #’(Z) for j < S. For example, in the case when
1=knNnl=t is a Cartan subalgebra, and Z =C u is one dimensional we see
that pro(Z) is the dual of a Verma module (cf. equation (3.6.5.21) below),
which will contain a finite-dimensional representation if u is negative.

REMARK. It may be instructive to make a few elementary observations
about the structure of proﬁC(Z ) knl) - For this digression, we will abbreviate

prozc (Z)(ml) = pro(Z).

By the Poincare-Birkhoff-Witt Theorem [Jacol, Serr2, Hump], multiplication
on Z(g) induces a linear isomorphism

(3.6.5.16) %@ ~%n )% (q).
It follows that a mapping T € Homq(?/ (g), Z) is determined by its values

on Z(n"); and conversely, any mapping from #(n") to Z extends to
a g-module map from #(g) to Z. Thus, as linear spaces, we have the
isomorphism

(3.6.5.17) pro(Z) ~ Hom(#Z(n ), Z) -

Consider the action of 1 on the module. The definition of the g-action is by
multiplication on the right:

I(T)(u)=T(ul), l€l, T € Hom (% (g), Z).
On the other hand, the condition that 7" be a q-module map is that
T(lu) = (T (u)).
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Thus we may write
(TY(u) = T(ul) — T(lu) + (T (u))
=-T(, u]) + (T (u)).

Since u~ is stable under ad 1, this formula allows us to see the linear iso-
morphism (3.6.5.17) as an isomorphism of l-modules, if we define
(3.6.5.18)

I(T))(u) = =T, (ad () + (T} (w)),

lel,ue#m ), T, c Hom# (n ), Z).

Note that this is the standard action of 1 on Hom(% (n" ), Z), constructed
from the actions ad on #(n" ), and the given action on Z [Serr2, Jacol,
Hump].

Denote by ¢ the center of 1; thus
(3.6.5.19) I=co[l, 1],

where [1, 1] indicates the commutator ideal in 1. Note that ¢ C k. Let
Z,- C(co)” be the set of weights for the adjoint action of ¢ on n™ . Then
the weights of ¢ acting on #(n”) have the form }° nyf, with § running
through X - and n s € Z", the nonnegative integers. These all lie inside
some proper cone in ic*. In particular, the multiplicity of any given weight
for ¢ in Z(n") is finite. This multiplicity is known as the partition function.
We denote it by p,- . Also, denote by C, - the set of all weights of ¢ on
% (n ). Write

(3.6.5.20) Zm )= > #m)

yECn_

where ?/(n")y is the c-eigenspace for the weight y . Note that dim#%(n"), =
Dp-(7).

Suppose that ¢ acts on the (I, kN 1)-module Z by scalars; that is, Z
consists of a single weight space for c¢. Since this is automatically true if
Z has an infinitesimal character, and since any (1, k N1)-module is a direct
sum of its c-weight spaces, the assumption that Z is a single weight space
is only a mild restriction on Z . Note also that if Z is a weight space for
c,sois Z®C, . If the weight defined by Z is u, = p € (c)”, then the
weight defined by Z® C is u+ Py - A very important special case is when
Z = C the one- d1mens1ona1 module with weight u.

By means of the decomposition (3.6.5.20) above, we may regard
Hom(#(n"),, Z) as a subspace of Hom(#(n" ), Z). Under the hypotheses
of the previous paragraph, it is a weight space for ¢, with weight u—y. It
follows that pro(Z) consists simply of the direct sum

(3.6.5.21) pro(Z)~ Y Hom(#n"),, Z),
v€C -
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and the c-weights of this module are the set u — C - . In the case when
1=knN1 =t is a Cartan subalgebra, we see that, as a t-module, pro(Z) looks
like a Verma module (cf. §3.5.3). However, it is not; the induced module
(3.6.5.2) is a Verma module, and our pro(Z) is dual to a Verma module.
But if the positivity condition mentioned above is satisfied, then the Verma
module dual to pro(Z) is irreducible; hence, V' itself is an irreducible Verma
module, and one is in a position to use the vanishing Theorem 3.6.5.15.

In light of the discussion above, the question to focus on is, what is the
structure of %S(Z)? When all #’(Z) except RBS (Z) vanish, the Euler-
Poincaré principle of cohomology [Lang3, p. 124] allows one to calculate the
K-structure of #° (Z). The result is a formula for the multiplicities of K-
types in ZS (Z) in terms of an alternating sum over the Weyl group of the
values of a partition function, not the partition function of all of n™ , but of
the noncompact part of n~ . This is a generalization of the Blattner formula
(cf. Remark (i) following Theorem 3.6.3.7). Despite its elegance, it is difficult
to get specific information about general K-types from it. However, if Z is
a character, then under the same positivity conditions that imply vanishing
of #’(Z) except for j =S, one can find one particular K-type, the analog
of the lowest K-type for the discrete series (cf. Remark (i) again); in fact
it is the lowest K-type in the sense of Vogan [Voga2, 4], which occurs with
multiplicity one. This implies in particular that %’S(Z )#£0.

Thus for certain (1, 1N k)-modules Z, we obtain a nontrivial (g, k)-
module %S(Z ), with (in principle) known K-structure. Furthermore, again
under the same positivity hypotheses, Poincaré duality considerations enable
one to show that if Z has an invariant Hermitian inner product, then so
does ﬂS(Z ), and in fact [Voga3, Wall5], if Z is unitary (i.e., the invariant
Hermitian structure is positive definite), then so is B?S(Z ). Hence one has
a construction of unitary representations.

Among these representations are the discrete series. Again for simplicity,
we assume that G, hence K and T, is connected, and we use the notation
of §3.6.3.

THEOREM 3.6.5.22. Let 1 = kN1 =1t be a Cartan subalgebra of g, and
let b Dt be a (O-stable) Borel subalgebra containing t. Let T be the torus
associated to t. Choose u € T + p, u dominant for b. Then %’S(Cu) is
the discrete series representation attached to u.

In Zuckerman’s original formulation, this result was simply a recognition
theorem, based on a characterization by Schmid [Schm2] of discrete series in
terms of their K-spectrum and Casimir eigenvalues. However, subsequent
work has enabled irreducibility, unitarity, and square-integrability to be es-
tablished a priori, so that the %S(C #) provide a construction of the discrete
series independent of Harish-Chandra’s character theory (see [Wall2] for a
careful account). That the %5 (C,) yield all discrete series is still beyond
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primarily algebraic methods. However, they do, and many other represen-
tations besides. For example, in [VoZu], all unitary representations with
nonvanishing relative (g, k)-cohomology are classified. These are the repre-
sentations whose multiplicities in L*(I\G) determine the Betti numbers of
locally symmetric spaces, via Matsushima’s formula [BoWa, HoWa, Mats).

4. Other directions and applications. The “applications” of Lie theory are
diverse and many; but often it is absurd to speak of “applications” when the
role of Lie theory is so basic and pervasive: although R” is a Lie group,
usually it is used in such a low-tech way that its Lie-theoretic properties are
superfluous. But when we combine it with its character group to form the
Heisenberg group acting on L? (R"), then its identity as a Lie group becomes
more relevant. Similarly with linear algebra: it would be egregious to claim
it completely as part of Lie theory, but as I hope was demonstrated in §1, the
border beyond which one should definitely consider oneself in Lie-theoretic
territory is easy to cross and not so far from the public entrance. There
is a similar identity problem on the high-end: to what extent should one
include the more exotic algebraic structures dreamed up in physics—Jordan
algebras, Kac-Moody algebras, Lie “superalgebras”, quantum groups, vertex
algebras—in “Lie theory™? Thus a comprehensive survey of “applications of
Lie theory” is not simply impossible, it is fruitless. Below I offer instead an
eclectic set of examples that I hope hit a few of the high points. For some
original and stimulating discussions of many applications of representation
theory, not exclusively of Lie groups, see various books and articles of Mackey
[Mack1-3].

4.1. Combinatorics. Representation theory, even just the finite-dimen-
sional theory of the general linear group, is rife with combinatorial quan-
tities. We illustrate with a few examples.

4.1.1. S-FUNCTIONS. Much of the combinatorics of symmetric functions,
developed in the nineteenth century, found natural interpretations in terms
of representations of GL, when that subject began to be understood through
the work of Schur [Schu] around the turn of the century. The symmetric func-
tions known as S-functions or Schur functions [Litt, Macd1] were introduced
by Jacobi, but have been named after Schur because of his interpretation of
them as the characters of the irreducible “polynomial” representations of
GL, or U,. There is a famous identity due to Cauchy [Macdl, Weyl2]
that, when interpreted in terms of representation theory, yields one of the
most useful formulations of the fundamental theorems of classical invariant
theory.

We will give a brief explanation of Cauchy’s identity and its representation-
theoretic interpretation. For an extensive discussion of symmetric functions
with applications to representation theory, I recommend [Macdl]. In this
discussion, we will follow the notation of [Macd1], although it differs from
our earlier notation.
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