Proceedings of the AMS Centennial Symposium
August 8-12, 1988

Elliptic Curves and Modular Forms

BENEDICT H. GROSS

An elliptic curve E over the field £ has a nonsingular plane model of the
form

2 2
y +a1xy+a3y=x3+a2x +ax+ag,

where the coefficients a; liein k. The set E(k) of solutions to this equation
(in the projective plane) has the structure of an abelian group: the unique
point on the line at infinity is taken as the origin and any three collinear points
sum to zero. When k = C is the field of complex numbers, the theory of
elliptic functions identifies E(C) with a complex torus, so—as a topological
group—with the product of two circles. When the field k is finite, E(k)
is clearly a finite group. When k is a number field (an extension of finite
degree of the field Q of rational numbers) the famous theorem of Mordell
and Weil states that the group E(k) is finitely generated.

We will focus our attention on the case when & = Q. Since E(Q) is
finitely generated, we have an isomorphism

EQ=ZoT,

where r > 0 is an integer and 7 is a finite group. The torsion subgroup
T is easily determined in any given case, and the proof of the Mordell-Weil
theorem yields an effective upper bound for the rank r of E. To determine
if this upper bound is sharp requires a search for rational points.

The following example has been investigated by Bremner and Cassels. Let
g be a prime number with ¢ = 5 (mod 8), and let E be defined by the
equation

y2 =x + gx.
Then the subgroup T of E(Q) is cyclic of order 2, generated by the point
P = (0, 0), and the rank r satisfies r < 1. One suspects that » = 1 in all

cases, although this is only known for ¢ < 20,000. Occasionally, the search
for a solution is quite time consuming: for example, when g = 2437 the
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smallest point P = (x, y) of infinite order in E£(Q) has coordinates

x = 1058218655773369472688280687468828399922014718555143690966617841
275081987041241794421770856177032513092966187596374600583396900 °

— 443090331670870476765298567239328435425666485280521498925653374541937139166973694383354835903889
y 4562398640636267034178360393354742958207189280664086915767660421227708280931775118586314953000 *

One approach to the determination of the rank is to study the number
of solutions to the equation modulo p. Choose a plane model for E with
integral coefficients and minimal discriminant A. Let 4, denote the number
of solutions of the reduced equation (including the point at infinity) over
Z/pZ, and write Ap =p+1 -a,. The L-function of E, which packages this
information into an analytic function of the complex variable s, is defined
by the Euler product

LE,s)=[[1-ap™) " -T[A-a,p™ +p' ™)
plA piA
which converges in the half-plane R(s) > 3/2. Expanded out, this product
is a Dirichlet series )., a,-n"" with integral coefficients a,, .

If we formally set s = 1 in the Euler product, we find the formal product
[I» /Ag) , where Ag is the number of nonsingular points on E modulo p.
Motivated by the expectation that a large value of r should lead, on the
average, to a large number of solutions modulo p, Birch and Swinnerton-
Dyer conjectured that the order of vanishing of L(E, s) at the point s =1 is
equal to the rank r. Aided by Cassels and Tate, they also gave an arithmetic
interpretation for the leading term in its Taylor expansion there.

To begin to attack this conjecture, one needs the analytic continuation of
L(E, s) to a neighborhood of s = 1. Following Taniyama, Shimura, and
Weil, one now hopes to prove that the function L(E, s) is entire by showing
that it is the Mellin transform of a modular form. More precisely, let N
be the conductor of the curve E. This is an integer, with the same prime
factors as the minimal discriminant A, which measures the ramification in
the division fields of E.

CONJECTURE. The function f(1) = Zn>lane2"i"’, for T in the upper

half-plane, is a cusp form of weight 2 for the congruence subgroup T',(N) of
SL,(Z).

The group I'y(N) consists of integer matrices (‘C’ z) with ad — bc = 1
and ¢ =0 (modulo N), and f(7) is modular of weight 2 if for every such
matrix we have the identity f((at+b)/(ct+d)) = (ct+ d)zf(r) IF f(7) is
a cusp form, its Mellin transform

Af, 5) = /0 " f(z'y)ysdy—y — @m) T()L(E, )

is entire. Moreover, Carayol has shown that f is then a “newform” of
level N, and hence an eigenfunction for the Fricke involution: f(—1/Nt) =
A N7 f(t), with A ==+1. This implies that A(f, s) satisfies the functional
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equation
A(f,s)=¢e-N T A(f,2-5)

with ¢ = —4.

There is now a great deal of theoretical and computational evidence in
favor of the conjecture that f(7) is modular, and for a given curve E it
can be checked using a finite amount of computation. For example, the
conjecture is true for the curves y2 =x>+ gx mentioned above; its truth for
all elliptic curves over Q implies Fermat’s Last Theorem, by recent work of
Ribet. In all that follows, we will assume the conjecture is true for the curve
E, and will derive some geometric and arithmetic consequences.

Let X,(N) be the modular curve over Q which classifies elliptic curves
with a cyclic subgroup of order N. The work of Eichler and Shimura shows
that the newform f(t) determines an elliptic quotient E,, of the Jacobian of
X,(N) over Q, and Faltings’ results on the isogeny conjecture show that E,
is isogeneous to E . Hence there is a nonconstant regular map ¢: X (N) —
E over Q which takes the cusp oo of X (N) to the origin of E. The
differential 27if(7) dt on the upper half-plane is invariant under I'y(N) and
defines a regular differential on X (N) over Q. Once ¢ has been chosen,
there is a unique invariant differential @ on E which satisfies ¢"(w) =
2rif(r)dt on Xy(N).

The following method of constructing points on E over number fields is
due to Birch. Let K be an imaginary quadratic field of discriminant —D,
where all prime factors of N are split. Let H be the Hilbert class-field of
K (the maximal abelian unramified extension, which has finite degree equal
to the class-number of K). Using the theory of complex multiplication, one
can construct Heegner points x on X (N) over H. We then define Py as
the trace of the point ¢(x) from E(H) to E(K); this trace is calculated
by adding ¢(x) to its conjugates, using the group law on E. Zagier and I
found a formula for its canonical height /%, which measures the amount of
paper required to record P, , in terms of the derivative of the L-function of
E over K:

_ ffE(C)wAw.il(P )

== 5 )

This formula implies that the point P, has infinite order in E(K) if and
only if L'(E/K, 1)#0.

The precise conjecture of Birch and Swinnerton-Dyer predicts that when
P, has infinite order, the group E(K) has rank 1, and that the finite index
[E(K) : ZP,] annihilates the Tate-Safarevi¢ group of E over K . Kolyvagin
has recently made a great advance, which essentially proves this. His work
brings us close to a proof of the full conjecture of Birch and Swinnerton-Dyer,
for modular elliptic curves E over Q where the order of L(E,s) at s=1
is either 0 or 1. But the conjecture for those curves where the L-function
vanishes to order > 2 remains completely mysterious, as does the central

L'(E/K, 1)
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problem of why the function f(7) attached to an elliptic curve E over Q
is a modular form.
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