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Sufficiency as Statistical Symmetry

PERSI DIACONIS

Abstract. Sufficiency is a theoretical tool that has grown up in mathematical
statistics. It may be described crudely as the theory of how much data can
be thrown away. This paper reviews the basic achievements of the theory in
statistical problems and sketches applications in other areas of mathematics.
It is shown how the idea gives a suitable framework for exchangeability
(an important piece of the Bayesian theory of statistics) and Gibbs states
(the rigorous theory of phase transitions in statistical mechanics). In these
last settings, sufficiency may be seen as a sweeping generalization of group
invariance.

1. Introduction to sufficiency. One of the basic problems of statistics is
this: one begins with a space 2 and a family of probability measures & on
& . It is assumed that an observation x € &2 is drawn from a fixed, unknown
P € . We are shown x and required to guess P . For example, the usual
formulation for » flips of a coin takes x as the space of binary n-tuples. For
each 0 € [0, 1], a probability P, is defined on x by Py(x) = 6'(1—6)"""
where ¢ = #(x) = x; +---+x,. The family & is taken as {Py},c;o - We
are shown x and required to guess 6.

In the example, the observation consists of the binary n-tuple x. It is
natural to ask if all of this is required or if x can be compressed to ¢ =
X, +---+x, without essential loss. This is the subject matter of sufficiency.

In the general set-up a function 7T : & — % is called sufficient for the
SJamily & if the conditional probability

(1.1) P(x|T(x) = 1)

is the same for each P € & . In (1.1) the definition of conditional probability
is the natural extension of the elementary notion P(A4|B) = P(ANB)/P(B).
Thus, P(x|T(x) = t) is defined as zero unless T(x) = ¢. It is taken as
proportional to P(x) if T(x) = t with normalizing constant making it a
probability distribution.
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16 PERSI DIACONIS

This leaves aside technical fine points which can be found in any standard
graduate text in probability (e.g., Billingsley [5]).

EXAMPLE 1: COIN TOSSING. For coin tossing, the sum 7(x) = x; +---+x,
is a sufficient statistic. Indeed,

Pi{xand T(x)=1}  6'(1-0)"" 1

Py{T(x) =1} (me'a-e" (1)

The right side does not depend on 6 . This can also be seen from the following
symmetry argument: P,(x|7(x) = t) is the chance of observing the sequence
x = (x;---x,) given T(x) = t. Imagine someone flipping a weird, biased
coin. They announce that there have been two heads out of the first ten tosses.
Whatever the bias, those two heads are equally likely to have appeared in any
of (9) possible places.

P{x|T(x) =1} =

Here is a different interpretation of sufficiency for coin tossing as a fact
about symmetric functions. Let e,(x,, x,, ..., x,) be the ith elementary
symmetric function in variables x,, x,,...,x,. Thus ¢, = } x;, e, =
Dic ;XX 5 etc. The generating function for e; is

n n
> et =1 +x).
i=0 i=1
The factorization of this generating function is equivalent to the sum being
sufficient for coin tossing. To see this, divide both sides of the identity above
by (1+6)", and multiply and divide e, by (%):

Z”:Le (n) 0’ _ﬁ (1 +x,0)
i=0 () *\i/(1+0)" i=1 (1+6)

On the right is the generating function for 7 flips of a coin with probability
of heads 6/(1+ 6). On the left, (?)6'/(1+6)" is the chance that n flips of
such a coin lead to i heads. The term ¢;/(}) is the generating function for
n flips given that i of them are heads. In the language of random variables
the identity appears

E[]x" =EE([]x13Y % =1).
The inner expectation is free of 6 because ) x; is sufficient for 6.

Many of the identities of symmetric function theory can be put into similar
language. There is much of interest to do in fitting Schur functions into this
picture. See, e.g., Macdonald [39].

Often, sufficiency is clear via symmetry. The point is that the notion
is useful without an underlying group. As an example, consider n binary
outcomes in which the chance of 1 increases over time. If the chance of
a 1 in place i is taken as e"' /(1 + €") with n € [0, co), this gives a
family of probabilities & = {pﬂ}”e[o’w) on binary n-tuples. The statistic
T(x)= E';l ix; is easily seen to be sufficient for & .
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The next example shows sufficiency in a continuous setting.
ExAMPLE 2. Take X =R"” and Z the family of all probability measures
on R” invariant under the orthogonal group O, . Thus P € & satisfies

P(4) = P(TA)

for every Borel set A and orthogonal matrix I'.

The sum of squares 7'(x) = xl2 +- 4 x,f is sufficient for & . Indeed
P{x|T(x) = t} is uniform on the sphere of radius /¢ for every P € & .
This example will reappear several times in later sections. The final example
shows sufficiency in a less standard setting.

EXAMPLE 3: CONVEX SETS. Let & be the class of compact convex subsets
in R?. For ce @ , define a probability P, as the uniform measure inside
c. Define P! as n-fold product measure. Take

x=R", P={P'}, e

This is a mathematical model for: “pick n points at random from inside
an unknown convex, compact subset.” This problem arises in estimating
volumes of convex polyhedra. See, e.g., Deyer, Freize, and Kannen [10]. It is
natural to ask what aspects of the data x, ---x, are required to learn about c.
It is not hard to see that only the extreme points 7'(x) of the convex hull are
required. Indeed, given T'(x), the rest of the data is uniformly distributed
inside the convex hull, no matter what convex set ¢ underlies the selection
process. It follows that T'(x) is sufficient.

The next section reviews the history and main mathematical results of
sufficiency. Section 3 introduces exchangeability as part of the Bayesian view
of statistics. Section 4 shows how sufficiency ideas give a natural foundation
for exchangeability, allowing a theory where there is no natural symmetry.
The final section contains pointers to open problems and related subjects.

2. Basic results of sufficiency. Sufficiency began, as with so much else in
mathematical statistics, with a paper of R. A. Fisher [18]. Fisher was com-
paring two different estimates for the scale parameter of the normal curve.
The estimators were appropriate multiples of

l n
=5, - X|.
n

i=1

Here the observation consists of X = (x,,...,x,) and X =1 3% Xx..
Fisher showed that the first estimator was 15% more accurate and indeed
that any estimate based on the sum of the absolute deviations would loose
some of the information in the full observation. Fisher’s argument intro-
duced the ideas of sufficiency which were evident due to the invariance of
the normal distribution under the orthogonal group. Later, Fisher [19] ab-
stracted the idea away from invariance and outlined a general theory. This
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history is discussed by Stigler [48] who also reports how- an earlier giant,
Laplace, missed the idea of sufficiency in his work on a very similar problem.

Fisher and Jerzy Neyman [42] developed techniques for finding sufficient
statistics and quantifying in what sense a sufficient statistic contains all of
the information in a sample. Basically, given T'(x) = ¢, with no knowledge
of which P € & generated x, a new observation x"* distributed just like
the original x can be created by independent randomization. Of course, the
distribution of 7' depends on the underlying P, but that is all.

Another sense in which a sufficient statistic captures the information is
given by the Rao-Blackwell theorem. This considers an estimator P(x) of
the measure P. If ﬁ(x) does not depend on x through a sufficient statistic,
then a more accurate estimator can be found, no matter what notion of
accuracy is being used. This necessarily vague statement is made precise
in any of the standard graduate texts on mathematical statistics of which
Lehmann [38] is recommended.

Modern work on the mathematics of sufficiency began with Halmos-Savage
[25] and Bahadur [2]. They developed a rigorous general framework using
o-algebras and the Radon-Nikodym theorem. They began the love affair that
mathematical statistics has had with refined measure theory. This continues
to the present day.

Group theory was also being employed to reduce the dimensionality of
statistical problems. If a problem is invariant under a group, the data can be
reduced to a so-called maximal invariant (a report of which orbit of the group
contains the data point). It might also be possible to reduce by sufficiency
and the question of whether these reduction operations commute is natural.
Charles Stein gave natural conditions for commutation which were expanded
in Hall, Wijsman, and Ghosh [24].

Sufficient statistics arise easily in connection with so-called exponential
families of measures. These have densities proportional to ™) with re-
spect to a dominating measure which does not depend on 6. For such a
family, given a sample of size n, T'(x,)+ T(x,)+---+ T(x,) is a sufficient
statistic. Conversely, if a family of measures admits a lower-dimensional
sufficient statistic B. O. Koopman, E. J. G. Pitman, and G. Darmois gave
conditions under which the family is exponential. To appreciate the problem,
consider & as the set of all measures on R x R. There are 1-1 continuous
functions from R x R into R. Any of these gives a sufficient statistic for
P, which is not any sort of exponential form. To rule out such behavior,
some notion of smoothness must be assumed. The best modern version due
to Hipp [26] proves a theorem assuming 7 is locally Lipshitz.

Exponential families constitute convenient families which include most of
the classically studied examples. A unified theory is summarized in Lehman
[37, 38], Barndorff-Neilson [3], or Johanson [28].

Exponential families are quite a restricted family of measures. Modern
statistics deals with far richer classes of probabilities. This suggests a kind of
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paradox. If statistics is to be of any real use it must provide ways of boiling
down great masses of data to a few humanly interpretable numbers. The
Koopman-Pitman-Darmois theorem suggests this is impossible unless nature
follows highly specialized laws which no one really believes.

There are two ways out of this conundrum. First, the Koopman-Pitman-
Darmois theorem depends on reduction to fixed dimension. If the dimension
of the reduction is allowed to grow with n a theory may be possible. As an
illustration, in the convex set example of §1, the extremal points of the sample
were a sufficient statistic. As the sample size grows, a polyhedral convex set
has order (logn) extremal points. See Groenboom [23] for recent work. I
do not know of a theory that uses these ideas.

The second way around the conundrum uses the idea of approximate suf-
ficiency. This idea has been developed in a comprehensive fashion by Lucian
Lecam. As an example, a statistic T is approximately sufficient for a family
P if

sup d(P(-|T =1), Q(|T =1))
P,Qe&

is small, where d is a metric on measures such as Hellinger’s distance or
total variation. Le Cam has shown that if a family admits an approximately
sufficient statistic, then the best one can do using all of the data is only
a small bit better than what is achievable using only the statistic. This is a
small part of a dazzling body of work. Le Cam and Yang [36] is an accessible
introduction.

There are several interesting aspects of sufficiency not described in this
brief review. The elegant theory of completeness and sufficiency connects the
analytic properties of a family of measure with the distribution of “what’s left
over after a sufficient reduction.” See Lehmann [38] for a recent review. The
theory of minimal sufficiency asks about the existence of smallest reductions.
There are still fascinating open problems here. See Landers and Rogge [30].

Of course, one need not throw away what is left over. These “ancillary
statistics” can be used to investigate if the family of measures under con-
sideration is really a reasonable match to the data being considered. This is
apparent in Fisher’s early work. Diaconis and Smith [15] give examples and
a review of the literature.

3. Introduction to exchangeability and equivalence of ensembles.

A. de Finetti’s theorem. Let Z, = {0, 1}. Let Z;° be the infinite product
space. A probability P on Z§° is exchangeable if it is permutation invariant:
PO, 1,%%---)=P(1,0,*%---), etc. An example is coin tossing measure
with parameter 6 : Py(f) = 0'1-6)"", t = X, +---+x,. Here and
above {x,,x,---X,,**---} denotes the cylinder set in Z;> which begins
X, X,-+-X, , where x; are binary digits.

One version of de Finetti’s basic result is the following theorem.
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THEOREM (de Finetti). The set of all exchangeable probabilities on Zc2’° is
a convex simplex with extreme points the coin tossing measures {Pp}oo ;-

The theorem says that for each exchangeable P there is a unique proba-
bility 4 on [0, 1] such that the following integral representation holds:

(31) P{xl’xz-..xn}_:/gt(l_e)n—tﬂ(de), t=x1+...+xn.

This holds for every n and binary sequence X, ---x, with the same u.

de Finetti’s motivation was philosophical. Statisticians have used expres-
sions like the right-hand side of (3.1) since Bayes and Laplace. The term
6'(1 — 0)"~" is the likelihood of observing X, ---x,. The measure u(df) is
the prior distribution. The integral represents the probability of observing
x, -+ x, averaging over different values of 6.

Subjective Bayesians like de Finetti prefer not to focus on unobservable
parameters like 6. They are perfectly willing to assign probabilities to ob-
servable outcomes like the next » flips of a coin. de Finetti’s theorem shows
that a simple invariance condition characterizes the classical assignments.
The theorem does more: starting from an exchangeable measure on observ-
ables, the theorem builds a “parameter space” [0, 1], and the likelihood and
prior as part of its representation.

A clear, readable introduction to de Finetti’s point of view appears in de
Finetti [9]. Exchangeability is of interest in many areas of probability. de
Finetti’s theorem can be shown to be easily equivalent to Hausdorff’s moment
problem. See Feller [17]. The survey by Aldous [1] gives a splendid treatment
with many other applications.

It is natural to try to develop parallel characterizations of the classical
parametric models of statistics. As will be seen, symmetry can only go part
of the way. The next section uses sufficiency to build a satisfactory general
theory. We begin by changing the space and group.

B. Freedman’s theorem. In 1962, David Freedman gave a version of de
Finetti’s theorem suitable for the normal distribution. Call a probability P
on R* orthogonally invariant if

for every cylinder set 4 % ---% with 4 ¢ R" for some n and I' in the
orthogonal group O(n).

THEOREM (Freedman). The orthogonally invariant probabilities on R™

are a convex simplex with extreme points {P,} ., ., where P_ is the prod-

uct measure on R of a mean 0, variance o Gaussian measure.

The theorem says for every orthogonally invariant P on R there is a
unique probability 4 on [0, co) such that

P(A**---):/ L

2 2
oA TR (dg),
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The present version of the theorem arose in Bayesian statistics. Earlier,
equivalent versions arose in Schoenberg’s [47] answer to a question in func-
tional analysis: When can a metric space be isometrically imbedded in .& 29
Berg, Christensen, and Ressell [4] and Graham [22] give recent surveys of
this line of work. The theorem can also be phrased as a description of all
natural measures on £°—this space is too big to have translation invariant
measures but orthogonally invariant measures are widely used as a substitute.
Choquet [7] contains an extensive discussion.

Perhaps the oldest version in widespread use is a theorem in geometry.
This result goes back at least to Mehler [41]:

Let S,_, = {(x;--x,) eR": xl2 + - +x: = n}. Pick a point from the
uniform distribution U on §,_, . The theorem says that the first coordinate
of such a point has an approximate Gaussian distribution: for every real
a<b,as n tends to infinity

U{xeS,_ :a<x <b}~ /b Wor ,l—e_xz/zdx.
n—1 a 27[

A proof is easy by calculus. One is required to calculate the surface area of
a sphere between a pair of parallel planes. Mehler derived the result while
looking at orthogonal expansions on high-dimensional spheres.

An extension of the result implies Freedman’s theorem: Indeed, the or-
thogonally invariant probabilities on R” form a convex set. The extreme
points are the uniform distribution on spheres.

U{a, <x,<b,---a, < x, < b}

b b 2 2
N/ 1.../k 1 ke_(xl"’“'xk) /zdxl...dx
a, a, (VZTC)

This shows that the extreme points are approximately products of Gaussian
measures and, for measures arising from orthogonally invariant probabilities
P on R*, must be exactly product Gaussian.

A careful version of this argument with error estimates appears in Diaconis
and Freedman [13] or in Diaconis, Eaton, and Lauritzen [11]. The latter
authors discuss the following variant: pick I' at random (Haar measure)
in O(n). The joint distribution of T D ,j K n'/? , are approximately
independent product normal variables.

As a final variant, the result appears in the statistical mechanics literature
phrased as a simple example of the equivalence of ensembles. Here, a system
is constrained to move on a constant energy hypersurface in 6xn-dimensional
space. In the easiest case (with no interaction) this surface can be taken as
the sphere:

n*

2 2
Xp 4+ Xg, = C.

In statistical mechanics, the chance of finding the system in some portion
of phase space is given by the uniform distribution (the microcanonical
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ensemble). Physicists routinely calculate with a different measure (the macro-

canonical ensemble) supported on all of R% . In the simple example consid-

2 2 2 2
ered here, this has density proportional to e~ 172+ %)/27" gith 6% cho-

sen to make the average energy equal to ¢. The equivalence of ensembles
says that for certain sets the calculation under the macrocanonical ensemble
is approximately equal to the calculation under the microcanonical distribu-
tion. Usually the bounds are fairly crude—enough to show that sets which
are small under one measure are small under the second. In this simple
setting, the quantitative versions of Freedman’s theorem give more precise
results. The microcanonical ensemble is approximately product normal for
sets which only depend on o(n) coordinates. See Diaconis and Freedman
[13] for a precise statement.

The equivalence of ensembles holds for very general energy functions.
Lanford [31] or Ruelle [46] give further details. The general set-up is closely
related to the general versions of de Finetti’s theorem explained in the next
section.

4. Sufficiency and exchangeability. The work on de Finetti’s theorem de-
scribed in §3 can be summarized as the study of measures invariant under a
group. In the examples, the extreme points were identified and parametrized
by a nice set: [0, 1] for exchangeable binary sequences and [0, co) for
orthogonally invariant processes. These are special situations. In contrast,
the basic set-up of ergodic theory considers processes indexed by Z, with
Z acting by translation. Now there is no neat description of the extreme
points—instead they are dense in the space of all invariant measures.

The problem of finding a generalization of the examples which would han-
dle the standard families of mathematical statistics was solved using the lan-
guage of sufficiency. To explain, observe that the exchangeable processes can
either be characterized as measures invariant under the permutation group
or as measures for which the sum is a sufficient statistic. Thus a measure is
exchangeable if and only if, for each n,

P(xy--x,|x; +--+x,=1)

is uniform on all binary n-tuples with ¢ ones.
Similarly, a measure is orthogonally invariant if and only if

P{-|x12+x22+-~+x,2,=t}

is uniform on the /¢ sphere. The following abstraction covers most cases
of interest in statistics.

For each i, there is a space Q; (usually taken as a Polish space with
its Borel g-algebra). Let Q = H;’:l Q,. For each n, there is a “sufficient
statistic” 7, : ]'[;'=l Q, — W, , where W, is some range space. The analog of
the uniform distribution on the inverse image of T, is played by a family of

pre-specified measures Q, , on []._, Q,.
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Given T, and Q, ,, define the class of partially exchangeable processes
MQ,T as all P on Q such that

P{|T,(x, - x,) =t} = Q, ,(°).
More technically, a regular conditional distribution for P on the first n
coordinates given T, =t is @, ,.
The Q’s and T’s are required to fit together as follows:

(1) Qn,t{Tn_l(t)} =1.

2) If
i i
Tn(xl .. .xn) — Tn(x1 .. .xn)’
then
/ li
Tn+1(x1 '”xn’ y) = Tn+1(x1 ”’xn ’y)‘
(3) Foreach se W, , teW, ,,
Q’H-l,l('xl ’ “xn]Tn(xl ”'xn) =S, xn+l) = Qn,s(xl o 'Xn).
As an example, for coin tossing, Q, = {0, 1}, T,(x;, ..., x,)=x+---+
x,,and Q, , is taken as uniform over all x, ..., x, with X;+---+x, =¢.

Conditions Zl)—(3) are easy to check. For example, (3) says that if one is told
there are s ones in the first n places and told x,,, , then Q, , assigns equal
conditional probability to all compatible strings.

It is easy to see that the partially exchangeable processes M, r form a con-
vex set. The first problem is to find a description of the extreme points. This
involves an excursion to infinity. Let X = ﬂ;‘;l % with X the g-algebra gen-
erated by 7, (X, ---X,), X,,,» X, 5 -.. - This X is called the partially ex-
changeable o-algebra. The first result is the following abstract version of de
Finetti’s theorem due to Diaconis and Freedman [12].

TreEOREM. If Q, and T, satisfy (1-3) above, then there is an E € X
such that P(E) =1 for each E € M, ; and such that

(a) Qn’Tn( x,-x,) converges weak-star to a limit Q(w) as n — oo, for each
wekE.

(b) {Q,}ucr ranges over the extreme points of the convex set M, ;.

(c) For each P € M, 1, there is a unique p on E such that

P() = /E 0, () u(dw).

The theorem evolved over generations. It begins in the group invariant
case with Krylov and Bogulyov. See Oxtoby [43] and Farrell [16]. Hunts’ [27]
axiomatic treatment of the Martin Boundary of a Markov chain is very close
to giving the full result. The crucial conditions (2) and (3) were abstracted
in early work of Freedman [20] and Bahadhur [2].

A general version in rather different language was sketched by Martin-Lof
[40] and Lauritzen [32-34] in Denmark. These authors worked in a more
general setting of projective limits rather than with the product description
of Q.
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In developing the modern approach to statistical mechanics, Dobrushin,
Lanford, and Ruelle developed a similar theory and conditions (1), (2), and
(3) are known as the D-L-R conditions in statistical mechanics. Preston [44]
or Georgii [21] contain recent presentations.

The theorem presents the extreme points in a rather abstracted form and
further work is required to massage this presentation into a classical mold.
Diaconis and Freedman [12] present dozens of examples which have occu-
pied researchers in Bayesian statistics for the past thirty years. Aldous [1],
Lauritzen [34] and Ressell [45] also present unified pictures from different
points of view. The latter is interesting in presenting a large class of exam-
ples where the sufficient statistics are sums with values in a semigroup and
the extreme points are indexed by the dual semigroup.

As one example of recent progress, here is a result of Kiichler-Lauritzen
[29] and Diaconis-Freedman [14]: Suppose one begins with an exponential
family through a sufficient statistic 7. One can then form the Q, r as
the conditional laws determined by the family. This gives the ingredients
of the general set-up and one can ask if the extreme points of MQ’T cor-
respond with the original exponential family. While it is easy to construct
counterexamples, a natural sufficient condition has been found which gives
the answer “yes” for any reasonable continuous or discrete family. The argu-
ment involves a delicate measure-theoretic extension of Cauchy’s functional
equation to partially defined functions. It gives infinitely many natural ex-
amples of Q’s and T ’s where the extreme points have a simple description.
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