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Some Noncommutativity Methods
in Algebraic Number Theory

OLGA TAUSSKY

This article will not deal with classical Galois theory, nor K-theory, nor
Langlands theory. It is an autobiographic piece by request, dealing with global
aspects. It is split into the following sections:

1. The principal ideal theorem, class field towers, Theorem 94, capitulation.
2. Integral matrices.
3. Conclusion.
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The existence of the two sets:
Reviews in Number Theory, ed. W. J. Le Veque, 6 vols., Amer. Math. Soc., Providence,
R.I, 1976
which covers the period 1940-1972, and
Reviews in Number Theory, 1973-1983, ed. Richard K. Guy, 6 vols., Amer. Math.
Soc., Providence, R.1., 1984
simplifies my bibliographical tasks.

I will accordingly usually give detailed references only to material issued prior to
1940 and to items which appear specially relevant to my treatment.
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1. THE PRINCIPAL IDEAL THEOREM, CLASS FIELD TOWERS,
THEOREM 94, CAPITULATION

A most impressive experience happened to me in my student days. A
very important problem had been solved, and my thesis teacher was involved
too. I became involved too and could not tear myself away from it for years
and even returned to it temporarily a few years ago. At that time when my
teacher Ph. Furtwingler had not yet found a suitable problem for me the
news came through that Emil Artin in Hamburg had reduced the famous
principal ideal theorem, at that time only a conjecture, to a problem on finite
metabelian groups. Artin had found an explicit correspondence between the
ideal class group of the ground field and the Galois group of the Hilbert class
field with respect to the ground field. The Hilbert class field is the largest
relative abelian and unramified extension of the ground field. The class field
of the class field, the second class field, has as Galois group with respect to
the ground field a metabelian group, with abelian commutator subgroup, and
quotient group with respect to the commutator subgroup a group isomorphic
to the class group of the ground field. Only p-groups needed to be considered.
It is known that in this case the commutator subgroup can be generated by
representatives of the quotient group of the commutator subgroup. This
is a case of group extension, and the whole problem comes under the title
“transfer of groups.”

Artin communicated this to Furtwangler who felt that the group theory
problem was in his reach. The reason for this optimism lay in the fact that
his previous thesis student Otto Schreier, then in Hamburg, had worked on
extension of groups and had developed certain relations which enter into this
subject. Furtwangler seemed uniquely suited for proving the relation needed.

Furtwingler was a pioneer in class field theory. He had never met Hilbert,
but he had studied Hilbert’s work which involved as yet unproved statements
and conjectures, some of which Furtwingler disproved. One of the latter
was the fact that the class field has class number equal to one. The fact that
all ideals of the ground field become principal, the so-called Hauptidealsatz
(principal ideal theorem) was now reformulated as a group theoretic relation
for nonabelian groups. For many weeks one did not see much of Furtwéangler.
He was a sick man who could not walk well and he used the snow on the
streets as an excuse for staying at home. This was very hard on me for he
had not given me a subject to work on, but suggested that I try to refind part
of what Artin had done, saying that it was easy, which, of course, it was not.
I overworked myself when trying to do it. When Furtwingler realized what
he had done to me, he finally sat down and introduced me to the machinery
he had developed in the meantime. I had no difficulty understanding this
and Furtwingler let me reprove the preparatory relations. By the end of
the summer Furtwéngler announced that he had proved the principal ideal
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theorem — via nonabelian p-group work. Although I cannot easily forgive
him asking me to reprove part of Artin’s ideas and even saying they were
not too difficult, I can forgive him for rushing into a proof of the transfer
relation which gives the proof of the principal ideal theorem for p-groups
as Galois groups. Furtwingler’s proof was not liked because it was heavily
computational. I defended him when Emmy Noether expressed her feelings
about this proof by saying that a first proof gives very much and ought not
to be criticized. She reacted in a very friendly manner to my outburst. In
due course other proofs emerged, one by Magnus, another one by Iyanaga,
a student of Takagi, who had installed himself in Hamburg. There was also
Hans Zassenhaus, a pupil of Artin who wrote the first modern book on group
theory. Some references are given to others who reproved the principal ideal
theorem. Artin published another paper in the Hamburger Abhandlungen,
vol. 7 (the path breaking one was in vol. 5 — I will never forget this). Artin
did indicate that the same method would get information about the subfields
of the class field. Furtwangler said that he had now plenty of problems for
my thesis. He himself wrote another paper proving the following theorem
for p = 2:

Let K be a field with 2-class group type (2,2,...,2). Then

there exists a basis ¢y,...,c, for the class group such that

each ¢; becomes principal in a relatively quadratic unramified

extension of K.
He then asked me to generalize this for odd p’s starting with p = 3. However,
it turned out that every p needed another condition, attached to p — 2, in
such a way that p = 2 was no exception, only nicer. I only saw Furtwingler’s
proof when it was published.

E. Artin had heard about my thesis, possibly the first one written on the
new ideas created by him. In a letter, handwritten by him, of which I possess
a copy, he inquired about my results. However, later he found this investi-
gation futile — when I met him years later he asked me whether I was still
working on these hopeless questions. Furtwingler too had realized this in
the meantime and withdrew from them turning to geometry of numbers and
found many thesis problems there. However, with no other major problem,
no class field colleague in the department, I tried to squeeze more out of these
questions, with little success.

Hasse followed Hilbert’s example and published a “book” inside the jour-
nal Jahresbericht der Deutschen Mathematiker-Vereinigung in two parts. Furt-
wangler checked part of his manuscript, but not all of his papers on class field
theory are cited. Since Furtwingler was a member of the Vereinigung and
was to receive the “book,” Hasse suggested to him to give me the “reprint”
he would send to him. Hasse, in his article in the Cassels—Frohlich book,
pointed to the work of Scholz and myself, mentioning the difficulty of our
investigation. The only time I saw Furtwéngler returning to class field theory
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was when Takagi visited Vienna and called on Furtwingler. Takagi had by
then obtained his famous results characterizing all abelian extensions as class
fields. However, even he declined to discuss class field theory. But Takagi
did actually listen to my new idea of studying the set of subfields of a given
field with respect to which a field is an unramified class field. J. H. Smith
generalized my work there. I have also a group-theoretic proof for the fact,
proved by Furtwingler by number theory, that a field with class group of
order 4 has a class field with cyclic class group. Hence the second class field
has class number 1. This theorem had made its way into some group theory
books, e.g., W. R. Scott, Group Theory (Prentice Hall, 1964).

While I was working on my thesis, a young German, a pupil of Schur,
turned up. He was still working on his thesis, I think, which was related
to Furtwingler’s ideas. I saw him talk to ‘Furtwéngler. I gathered that he
was very gifted and interested in computing. So when I wanted to find out
whether a certain group of order 27 with given relations could be the Galois
group of a second class field I wrote to him and asked if he could find a
field for which this situation would hold. It did not take long before he
supplied me with such a field. It was a cubic subfield of the field product
K3,K3 .4 where K (p, prime numbers) is the subfield of degree / of the
field of pth roots of unity. His name was Arnold Scholz. In 1930, I went to
Konigsberg where a meeting of the Deutsche Mathematiker-Vereinigung took
place (Hilbert gave a famous lecture on logic there). I gave a lecture on my
thesis and met famous people like Noether and Hasse. I recognized Scholz
and since our mathematical interests were clearly related (he was a few years
older and had already several publications by then) we started a conversation.
Soon after I returned to Vienna I had a letter from him suggesting joint
work by correspondence, at this time on the field Q(v/—3299), which has a
noncyclic 3-class group of order 27. In connection with this work he wrote an
important paper on cubic fields. We added another part to this paper studying
the second 3-class groups of certain imaginary quadratic fields. I could be
particularly helpful there since my training in number theory had turned out
(not with my real preference) more group theoretical than arithmetic. The
fields studied were to have 3-class groups of type (3, 3) hence the first class
field has its relative Galois group of type (3, 3).

By Hilbert’s Theorem 94 at least one ideal class of order 3 becomes princi-
pal in each unramified extension field of relative degree 3, a property Scholz
called “capitulation,” by now generally accepted. In our case it was exactly
one class. The pattern of capitulation gave us information on the Galois
group of the second 3-class field and even higher ones and it turned out that
they came to an end after a finite number.! This was information on the

T understand that Gold and his student Brink have found one error in our capitulation table,
by computer.
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so-called “class field tower.” Furtwangler had suggested the problem of find-
ing out whether it had to break down after a finite number of steps. I then
suggested the name “group tower” for the set of Galois groups with respect
to the ground field of these fields.

I further conjectured that the class field tower had to break down because
the group tower had to break down. Scholz did not really believe in this.
Anyhow this idea was defeated. The first one to do this was Noboru Ito for
p = 3. However, Magnus was able to show that arbitrarily long group towers
can exist. He invented a very ingenious method for this which on its own is
very much appreciated. Later Zassenhaus, a guest at Caltech, showed to C.
Hobby, my thesis student, the sketch of a very elegant matrix method which
led to infinite 2-group towers apart from a small number of exceptions. Serre
succeeded for all cases. However, an infinite class field tower was constructed
by Golod and Safarevic. At an international congress Safarevic announced
that while people some 20 years earlier had tried to prove the breaking up of
the class field tower by group theory he saw a way for contradicting this by
group theory.

In 1931, I attended a meeting of the Deutsche Mathematiker-Vereinigung
for the second time, of course, also hoping to find a position. It was a
very interesting meeting, e.g., Godel was there, and, of great importance for
my future. One of my teachers in Vienna, Hans Hahn, spoke to Professor
Courant from Gottingen about helping me. It was a very difficult time for
young people. My lecture at that meeting was, of course, in class field theory,
and they actually needed somebody at that time with knowledge in that field.
There were not many young people with a thesis in class field theory and
they were trying to publish Hilbert’s collected works, with number theory as
volume I. The two editors they had working on editing that book had no
training of that kind. Hence I was brought to Gottingen not much later.

Now I want to return to Furtwingler once more. I really have very great
feelings of gratitude for him. He might have given me a little thesis problem
in number theory. It would have spared me from my sufferings. But being
introduced to such a profound mountain of great beauty has lifted me up
forever. Furtwiéngler was a very hardworking and talented man. He had many
thesis students and found appropriate thesis subjects for all of them. But he
also found subjects for the survey articles which were demanded for students
who did not write a thesis, but planned to take up teaching in high schools.
Algebraic number theory was merely taught in a 2-hour seminar, himself
lecturing, no homework. His ill health prevented him from contacts with the
steadily growing abstract algebra developments which took place in Germany
under the influence of Schur, Artin, Hasse, Noether, van der Waerden, and
others and their flourishing schools. Hence my education in this respect was
insufficient. One of our teachers in Vienna, a young and enthusiastic man,
Karl Menger, a former colleague of O. Schreier in Hamburg, noticed this
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deficiency. He ran a seminar where abstract algebra was studied. He even
invited a former thesis student of Emmy Noether, Heinrich Grell, to visit (he
was a former colleague of Nobeling, who was a thesis student and assistant
to Menger) to lecture to us. I recall how excited I was when he introduced
left and right ideals in rings. I had never heard about them previously. The
books by van der Waerden had not yet appeared.

Furtwéngler was also hostile to p-adic numbers. I wonder whether he had
a dislike for Hensel. He used to say that it was sufficient to use the infinite
sequence of congruences which they replace. Furtwéngler felt very pleased
and honored when he was invited to write the article on “General algebraic
number theory” for the new edition of the Enzyklopddie der mathematischen
Wissenschaften. However, this article was so old fashioned that Hasse and
Jehne published a revised edition; Furtwéngler had died in the meantime.

So when I came to Gottingen for 1931-1932 not only did I face the hard
work of editing Hilbert’s work, which contained errors and wrong conjec-
tures, but I was faced with modern abstract algebra of the highest level and
had difficulties. There were two very talented young men eagerly awaiting
me: One was W. Magnus, a pupil of Dehn in Frankfurt who had worked
on infinite groups and his paper on the Freiheitsatz is still very well known,
the other H. Ulm, a pupil of Toeplitz who is known for his work on infinite
abelian groups. They had not known about class field theory and in addition
had little experience in proofreading while Professor Menger made me do
quite a bit of such work. In Gottingen I was also asked to attend Courant’s
course on partial differential equations and grade homework. (Secretly he
hoped to win me over to this subject, still the favorite one in the “Courant
Jsroup.” Later, when I was recruited into aerodynamical work in London
during WWII, I wished I had learned more about this subject then. I also
learned to appreciate its beauty.) However, at that time there was E. Noether,
the champion of abstract algebra, waiting for me eagerly. She told me that
she and Deuring, her favorite student, had studied class field theory and
expressed the hope that her tools of abstract algebra would reprove the cur-
rent achievements in algebraic number theory. She had frequent visits from
Hasse, van der Waerden and, at least once during my stay, E. Artin. She ran
a seminar on class field theory in which I lectured too, on cyclic unramified
extension fields. There was also Landau who, at least once, made me lecture
on Mertens. Emmy was amazed to hear that Hilbert’s work contained errors
on many levels. She was an editor of part of Dedekind’s collected works and
felt certain that he made no errors. She discovered that the groups Hilbert as-
sociated with the prime ideals in normal fields were already Dedekind’s work
and insisted that they be renamed as Dedekind-Hilbert groups. She kept on
finding more items in Dedekind attributed to others, but once I heard Hasse
remarking that she was going too far there. The editing of Hilbert’s book
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was particularly burdensome (although some people told me to make a life-
time employment out of this) since it was a deadline job, to be completed
by Springer for Hilbert’s 70th birthday. Hilbert was pleased about his papers
being published, but had no wish to be involved in the editing. However, he
said to me clearly that his work in algebraic number theory had been more
satisfying to him than his other contributions.

Since I knew more mathematicians than my two colleagues did, I wrote to
people asking if they knew of any errors in the volume and I received helpful
replies. I recall particularly Fueter and Speiser in Zurich. But they also wrote
that it was wrong to reproduce the Zahlbericht since its presentation was not
the best for algebraic number theory; also Schur did not care for reprinting
this volume according to what Emmy, who had seen him during the Christmas
vacation, reported. I suppose they preferred the treatment of Dickson in
Algebras and their arithmetics. Emmy made no comments herself, of course,
she was very much attached to Hilbert and anyhow there was no question of
rewriting Hilbert’s Zahlbericht instead of editing it. I heard Emmy frequently
shout out: “Dies muss hyperkomplex bewiesen werden”. She herself had a
very good year at that time. She had reproved and extended Gauss’ Principal
Genus Theorem by methods one would later call cohomology. Again I heard
her saying (1 —S = 2 when S = —1) meaning that the operator 1 — S leads
to squaring when S means “the inverse.” She was preparing herself for her
1-hour address at the International Congress at Zurich the same year.

After the Congress I did not see her again until I arrived at Bryn Mawr
College in 1934. Among other activities she asked me to present the fun-
damental items of algebraic number theory to the small class formed by M.
Weiss, a group theoretician, Grace Shover, a pupil of MacDuffee (on alge-
bras), Ruth Stauffer, who wrote a thesis under Noether on the integral basis
(extending work of Speiser), published in Amer. J. Math. 58 (1936) 585-599.
The previous year they had studied van der Waerden’s book, vol. 1, which had
appeared not long before. Now they wanted to study some seminar notes by
Hasse. But they had first to revise their number theory. MacDuffee seemed
unattached to the big schools like Dickson’s, but had worked on algebras on
his own. Emmy appreciated him and since she was corresponding with Deur-
ing in Géttingen on the preparation of his book Algebren she informed him
of MacDuffee’s and Grace’s thesis publications for his list of references. I
met MacDuffee later at meetings of the American Mathematical Society. I
will discuss his influence on my work later.

As soon as I started my elementary lectures Emmy flared up and criticized
my approaches, which I had taken from Furtwingler, who had taken them
from Hilbert. In Gottingen she had not informed me of her feelings. I
learned there Emmy’s concepts of “cross products” and “factor systems.” She
cited Artin as saying that the Zahlbericht had held algebraic number theory
back for years. Later I was criticized by Mac Lane for not giving Emmy
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credit in my article on her when referring to her work in Gottingen. He
introduced his student Lyndon to cohomology and was led to the well-known
book “Eilenberg and Mac Lane”.

Although I have used cohomology in some of my work, I have not used it
in algebraic number theory, but I am a great admirer of the paper by Brumer
and Rosen.

When at Bryn Mawr I traveled frequently with Emmy to Princeton and
increased my knowledge in topological algebra there. This helped me finally
to break away from my “hopeless work™ in class field theory for the time
being.

After Bryn Mawr I went almost straight to Cambridge, England where I
was to stay for the next two years. There number theory was the work on
the Hardy-Wright book and otherwise analytic number theory. However, I
gave a voluntary short course during my last term. Heilbronn, of course,
was there after his famous achievement concerning the Gauss conjecture.
He was interested in working with me on the influence of the Galois group
on the ideal class group. However, I had planned to go on with topological
algebra on one hand and, on the other hand look for help from Philip Hall,
a known expert on p-groups. While B. H. Neumann had a certain interest in
my attempts in topological algebra, P. Hall did not know enough class field
theory to help with the group-theoretic problems connected with capitulation.

I myself had no chance of teaching algebraic number theory apart from a
brief course on class fields, the year after I had left Cambridge, but visited
there for one day each week. It was at that time that Hilbert’s Theorem 94
started to fascinate me and I hoped to do something about it some day.

I could only teach algebraic number theory again after I was appointed at
Caltech in 1957. (I had an odyssey in my academic life for almost 20 years;
it included WW II and heavy employment duties otherwise.) Remembering
Emmy’s dislike for my presentation of it at Bryn Mawr I promised myself
to teach it “the modern way.” One day the best student in my class came
up to me with a small book in his hand. It was H. Mann’s book on the
subject. Mann was a thesis student of Furtwiangler, like myself, and the
student wanted me to follow this, actually very nice, book. Bringing up H.
Mann gives me the opportunity of mentioning that I possess a write-up by
him in which he points out a list of errors in Hilbert’s and Furtwéngler’s
work.

I come now to Hilbert’s Theorem 94. It concerns unramified relative cyclic
extensions of relative degree a prime p. In such a field an ideal class of the
ground field, not in the principal class there, becomes principal. It is an
“existence” statement.

Although what I am going to describe now happened much later and is
still of great interest, I will discuss it now for two reasons: It is still class field
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theory and further it is connected with my thesis and the work of Furtwingler
that preceded and my work with Scholz.

Hilbert had erred about his conjecture concerning the class number of the
class field, he had not been able to prove the principal ideal theorem, but he
had Theorem 94 with a very elegant proof which informs on the capitulation
in the class field. Deuring, in his Zentralblatt review of my thesis-attached
paper in J. Reine Angew. Math., had pointed out that Theorem 94 had not yet
been proved by group theory. One day our group theorist M. Hall produced
such a treatment. Zassenhaus then played a role in this. He invited me to
give a lecture at a so-called Special Session at a meeting of the American
Mathematical Society. (He also invited me to become an editor of his newly
formed Journal of Number Theory. Some recent number-theoretic work of
mine had been appreciated by him.) The lecture was supposed to be of
computational nature. I decided to study the joint work with Scholz for
p > 3. There I noticed two new facts turning up:

(a) a certain commutator which turns up with a power >_? th2 = 0(p)
for p> 3;

(b) there are 2 cases to be considered. Each cyclic extension of degree p
of a field corresponds to a subgroup of the class group of the ground field.
The class which capitulates may be contained in this subgroup or it may not.
Hence one has these two cases to consider, a fact which is somehow also
contained in the group-theoretic proof.

I had the good fortune of having H. Kisilevsky, a student of Iwasawa,
working at Caltech by then. Both of us published papers concerning this
problem. Kisilevsky interpreted my observations by cohomology. Somehow,
since our work the title Hilbert Theorem 94 has become a title for publica-
tions. An example for this is the work of Miyake, who published a chain of
such papers. There is also an earlier paper by Iwasawa using cohomology on
related material.

Examples of work connected with Theorem 94 are still not plentiful. There
is a thesis written under the late Bob Smith in Toronto, by S. H. Chang,
concerning related matters. Further, Heilbronn’s student Callahan’s thesis is
connected too.

During my stay in Gottingen, Artin came there to give three lectures, to
introduce Herbrand’s methods to class field theory. I took careful notes, even
adding certain items. They were used in lectures very frequently. Finally,
Robert Friedman, a student of Tate, translated them into English and they
were incorporated into H. Cohn’s book A classical invitation to algebraic
numbers and class fields. '

I will now leave the subject of class field theory in this article, apart from
a postscript.
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Korpererweiterungen, J. Reine Angew. Math. 175 (1936) 100-107, 11, 182 (1940) 217-
234,

O. Schreier, Uber die Erweiterung von Gruppen I, Monatsh. f. Math. 34 (1926)

165-180. II, Abh. Math. Sem. Hamburg 4 (1926) 321-346.
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SPECIALLY RELEVANT

G. Cornell and M. Rosen, Group-theoretic constraints on the structure of the class
group. J. Number Theory 13 (1981) 1-11.

Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya
Math. J. 29 (1967) 281-285.

G. Gras, Extensions abéliennes non ramifiées de degrée premier d’un corps quadra-
tique, Bull. Soc. Math. France 100 (1972) 177-193.

K. Hoechsmann, /-extensions, in: Algebraic Number Theory, ed. by Cassels and
Frohlich. (Proceedings of the Brighton Instructional Conference, 1965). Washington,
D.C.: Thompson, 1967.

H. Koch, Galoissche Theorie der p-Erweiterungen; Introduction by I. R. Safarevic.
Berlin-New York: Springer and Berlin: VEB Deutscher Verlag der Wissenschatten,
1970. Many references.

B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76
(1984) 179-330.

K. Uchida, On imaginary Galois extension fields with class number one, Sugaku
25 (1973) 172-173.

2. INTEGRAL MATRICES

This brings me to my next section, the one of greatest interest to me. Com-
plications dictated by the circumstances of my life have not always allowed
me to devote myself to my favorite subject, number theory. My thesis was
mainly in group theory. I was rescued for some time by working with Arnold
Scholz. The war, WW II, made a numerical analyst of me in Great Britain
and later in the USA (with some exceptional breaks through the influence of
MacDuffee’s work and collaboration with E. C. Dade and M. Newman). In
1957, I started my work at Caltech. Working with thesis students, postgrad-
uates, temporary colleagues like E. C. Dade, Kisilevsky, Estes, Guralnick, P.
Morton, P. Hanlon, and other brilliant visitors was terrific. Some of it was
number theory. It was noncommutative and concerned integral matrices.
H. Cohn permitted me to add an appendix on integral matrices to his 1978
Springer book; I also contributed to Roggenkamp’s 1981 volume, Springer
Lecture Notes #882.

In M. Newman’s book Integral matrices (Academic Press 1972, chapter
X, 15), he mentions a theorem (obtained jointly with myself) concerning
integral circulants: A unimodular circulant of the form AA4’, where 4 is a
matrix of rational integers, is equal to CC’ where C itself is again a unimod-
ular circulant of rational integers (the theorem itself arose from my idea of
generalizing the concept of normal basis). Circulants can be looked upon as
“group matrices” under the definition given in my article “A note on group
matrices.” As Newman mentions, the theorem was generalized to statements
for more general groups and finally for all groups by Rips, 1973.

Another concept to be mentioned here is the discriminant matrix, the inte-
gral symmetric matrix whose determinant is the discriminant of an algebraic
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number field. The quadratic form associated with this matrix is a “trace
form.” A paper by myself, entitled “The discriminant matrix of an algebraic
number field” showed that this matrix has nonnegative signature. This was
used by P. E. Conner and R. Perlis, who wrote the book A survey of trace
forms of algebraic number fields (World Scientific, 1984).

The fact that the unit of finite order in the group ring of the S3 does not
contain a multiple of the unit element (pointed out by myself) was explained
by Takahashi. Reiner felt that the article John Todd and myself wrote on
integral matrices of finite order (in 1939, with the war to start any moment
and us in London) was a pioneering contribution to integral representations.
In his later article on this subject he included a long bibliography.

Now I will show some of my other results. Matrices are mathematical
objects which by their own nature are connected with noncommutativity. I
am now returning to C. C. MacDuffee, whom I had met in 1935 and whose
work had a great influence on me. First of all, I learned from him that
Poincaré had introduced a connection between ideals and integral matrices.
But this was not taken up very much. At some meeting I met Latimer, who
also sent reprints. I observed that the two sets had a common element, a joint
paper. This paper is not mentioned in Deuring’s book Algebren, although 1
feel that both authors, or at least one of them, would have included it in
Emmy’s parcel. This is one on which I have spent much time and which
has definitely become quite popular. I started this with a paper entitled
“On a theorem of Latimer and MacDuffee.” The reason why Emmy, and
perhaps also Deuring, ignored this paper is that it deals with matrices. While
algebraists use matrix algebras they tend to look down on matrices. In my
early days I did the same. I now applied the work to the ring of integers
@ in an algebraic number field F, assuming it to be of the form Z[«a], «
assumed the zero of an irreducible monic polynomial f(x) of degree n. The
theorem concerns all integral n x n matrices 4 for which f(A) is the zero
matrix and their division into classes {S~'A4S} under unimodular integral
similarity S. It can be shown that there is a 1-1 correspondence between
these matrix classes and the ideal classes in &. Hence the number of matrix
classes is finite. The work of Latimer and MacDuffee which is applied to
algebras is much more complicated, and MacDuffee’s papers are much more
complicated for the same reason. I then found an independent proof. I spent
extra effort on this since I encountered only people (some of high standards)
who thought that there was only one class, i.e., integral matrix roots of f(x)
were unimodularly similar. (However, Zassenhaus has done related work on
integral representations.) While Latimer and MacDuffee let it go at that, I
built up a theory related to this theorem which is much cited and applied.
The theorem was even generalized to abstract rings (see D. Estes and R.
Guralnick), and Barry Mazur gave me a more modern proof.

I showed that the principal ideal class corresponds to the class of the com-
panion matrix, the inverse ideal class to the class of the transposed matrix.
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(A. Frohlich, in his 1983 Ergebnisse book, has a generalization of the lat-
ter fact.) On the other hand a matrix is similar to its transpose. This is
elaborated in my 1966 Annalen paper. Let

S7l4S = A4’

A with irreducible characteristic polynomial. Then S is symmetric and can
be expressed as
S = (trace Aa;ay)

where 4 € Q(a), where « is a characteristic value of 4 with characteristic
vector ay,...,a,. The paper contains further results. More generally, since
the matrices which enter all classes are all zeros of the same polynomial they
must all be similar, but not via unimodular matrices, in general. I connected
this question with another concept of MacDuffee, not in the same context.
This concerns “Ideal Matrices.” I will return to this after discussion of three
other items:

(1) I investigated matrix classes which contain symmetric matrices. (This
is in connection with D. K. Faddeev’s and also E. Bender’s work on polyno-
mials with symmetric matrix roots.)

(2) If the maximal order is not generated by a single element, then one
can replace the matrix classes by classes of integral representations of the
maximal order under unimodular similarity.

(3) When studying matrices one rarely bothers about the numbers which
turn up inside the matrix, with the exception of the companion matrix. How-
ever, Ochoa in Madrid, Spain, did bother and he found that under circum-
stances (studied by Rehm) sparse matrices of the following type can occur in
a matrix class

F 0 1 o - 0 07
0O O 1 .- 0 0
o o0 o0 -- 1 0
a a a3 --- ap-1 4Qap

Lby 0 O - 0 by |

I now return to the concept of ideal matrix, again for ideals in the maximal
order and quite complicated in MacDuffee’s work. I begin with the definition.

Let & have the basis wy,...,®, and let o, ..., a, be the basis of an ideal
in @ and A an integral matrix for which

Then A is called an ideal matrix with respect to the bases chosen. If the bases
are altered then A is replaced by UAV where U, V' are unimodular. Since 4
can be transformed into Smith normal form by U’s and Vs it tells much
about the ideal. My paper “Ideal Matrices I” explains how the ‘quotient’ of
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two ideal matrices leads to a similarity between different matrix classes. I
have by now written four papers on ideal matrices. However, MacDuffee’s
ideals did more for me. For he showed that mapping the elements of an ideal
in the maximal order into the ring Z"*" (assuming the underlying field of
degree n), a principal ideal ring, the ideal matrix turns up as gerd or gcld of
the respective maps.

This led to a paper? in which I was able to show that principal or nonprin-
cipal can be replaced by commutativity or noncommutativity. The fact that
Z"*" is a euclidean ring and that there is a procedure for finding gcrd or geld
by computation is of help for numerical work here.

There is a book by C. Chevalley where he studied a more general situation.
He assumed his matrices to have entries from a field k, commutative or not,
and showed that the arithmetic can be brought down to arithmetic in k. This
leads to the study of ideals in the matrix algebra. He points out that the case
of k commutative was treated also by V. Korinek.

My work on ideal matrices was picked up by others, the first one by a
student of Don Lewis at Ann Arbor, Michigan, Burgie Wagner, in “Ideal
matrices and ideal vectors,” later by S. K. Bhandari and V. C. Nanda, in
“Ideal matrices for relative extensions” and S. K. Bhandari, in “Ideal matrices
for Dedekind domains.”

In particular they had studied my paper “Integral Matrices II,” in which
I tried to find information on the ideal matrix for the product of two ideals
in the maximal order, in terms of the ideal matrices of the factors. Well, it
is not just the product! A factor U, a certain unimodular matrix has to be
inserted between 4 and B. In India they introduced the concept of the “AUB
Theorem.”

My contribution to integral matrices started to grow steadily after I entered
Caltech in 1957. So when I was asked to give a one-hour lecture at an AMS
meeting I felt ready to give a lecture entitled “Integral Matrices.”

Among my papers on integral matrices I want to point out some subsets.

() The first subset is motivated by a theorem for fields.

While any square matrix with elements in a field k can be expressed as the
product of two symmetric ones, with elements in k, this is not always true
for integral elements, although one factor, say the first one, can be expressed
this way.

The question arose: when can both factors be expressed over Z? In a paper
dedicated to C. L. Siegel’s 70th birthday, by invitation from Acta Arithmetica,
I solved this for n = 2 and received an appreciative letter from Siegel, who
was a student of Frobenius and quite devoted to matrix theory. I wrote
another paper on this subject, this one at the suggestion and partial advice of
my former student E. Bender. This particular problem has led to interesting
details.

2This paper has slight inaccuracies in the presentation.
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Let 4 = (a;;) be the matrix to be represented. Then associate with it the
quadratic form

(1) a12x? + (az — aj)xy — ay y?

However, for the problem considered a second quadratic form turns up. It
was shown that it is the square of the first one. They both have as discriminant
the discriminant of the matrix A4.

It can then be shown that the second form is in a form class whose order
is a divisor of 2. This implies that the matrix 4 has to be in a matrix
class whose order is 1, 2, 4. In addition there are some exceptional form
classes involved. The first example of this was given by D. Estes and H.
Kisilevsky. van der Waerden, who had heard me lecture about this, stated
that it would be congruent to (1). But later he told me in two letters that it was
the negative square of the first one. His paper received a fairly long review
in Mathematical Reviews and Cassels from Cambridge, England, asked me to
send him a copy of these lectures; they were not yet published, but bound as
reports. He said: “but this is Gauss’ duplication of a quadratic form,” and
then he added, “but it is rather weird.”

My further work includes three papers with titles:

“Norms from quadratic fields and their relations to noncommuting 2 x 2
matrices.”

(B) Paper II has the subtitle “The principal genus”; Paper III has the sub-
title “A link between the 4-rank of the ideal class groups in Q(y/m) and in
Q(v/-m)”.

(7) Let A, B be noncommuting 2 x 2 integral matrices, with at least one of
them, say A4, with eigenvalues in Q(y/m), but not in Q. Then

det(AB — BA) = —norm A, A € Q(vm)

If both matrices have eigenvalues not in Q, then this can lead to an intersec-
tion of norms from two different quadratic fields.

This last theorem was studied by several people and Zassenhaus reproved
and elaborated it via cyclic algebras in 1977.

() Another result is:

Let 4 be a 2 x 2 integral matrix with eigenvalues in Q(y/m), m
not a square. Let XAX~! = 4’ where ' denotes transpose.
Then —det X = norm 4,4 € Q(v/m).

This is proved in my paper “Ideal matrices 1.” Dennis Estes studied (), (),
and (d) via Galois cohomology and a generalized Latimer and MacDuffee
correspondence. In connection with my paper “Ideal Matrices III” an appli-
cation to Galois modules and group matrices was made in the case where the
field is normal, with a normal basis also for the integers and even the ideal
is to have a normal basis. (The last two conditions are not always satisfied,
of course.)
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The 1982 Dekker book edited by me contains a review and elaboration of
some of the items mentioned here.

There is also a paper from 1979 “A diophantine problem arising out of
similarity classes of integral matrices” which was generalized by R. Guralnick
in a much-appreciated paper in J. Number Theory.

I want to close with mentioning two later papers:

“Some noncommutative methods in algebraic number theory,” a paper
connected with my 1982 lecture at the symposium honoring Emmy Noether’s
100th birthday. It has many references. It also uses central polynomials and
is attached to Noether’s work on the principal genus.

“Composition of binary integral quadratic forms via integral 2 x 2 matrices
and composition of matrix classes.” [Equation (16) in this paper is mislead-
ing, but it is explained by the footnote and the equations that follow.] While
composition of binary quadratic forms was introduced by Gauss, the matrix
approach can be generalized to all dimensions. (This will be mentioned again
under problems.)

INTEGRAL MATRICES BEFORE 1940

E. Artin, Zur Arithmetik hyperkomplexer Zahlen, Abh. Math. Sem. Hamburg 5
(1928), 261-289.

C. Chevalley, L'-arithmétique dans les algébres de matrices, ASI 323, (1936), Her-
mann, Paris.

V. Korinek, Une remarque concernant ’arithmétique des nombres hypercomplexes,
Mém. Soc. Roy. Sci. Bohéme (1931) NR 4, 1-8.

H. Poincaré, Sur un mode nouveau de représentation géométriques des formes

quadratiques définies ou indéfinies, J. Ecole Polytech. Cah. 47 (1880) 177-245.

SPECIALLY RELEVANT

(apart from items mentioned inside the section)

E. Bender, Classes of matrices and quadratic fields, Linear Algebra and Appl. 1
(1968) 195-201.

A. Buccino, Matrix classes and ideal classes. I/linois J. Math. 13 (1969) 188-191.
(He bases his work on a general integral domain.)

D. Maurer, Invariants of the trace-form of a number field, Linear and Multilinear
Algebra 6 (1978/1979) 33-36.

M. Newman, Symmetric completions and products of symmetric matrices, Trans.
Amer. Math. Soc. 186 (1973) 191-210 (1974). (Generalizes Taussky’s work on fac-
toring integral matrices.)

W. Plesken and M. Pohst, On maximal finite irreducible subgroups of GL(n, Z)
II. The six-dimensional case, Math. Comput. 31 (1977) 552-573. (Uses the theorem
of Latimer and MacDuffee.)

H. P. Rehm, On Ochoa’s special matrices in matrix classes, Linear Algebra and
Appl. 17 (1977) 181-188.

I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer.
Math. Soc. 8 (1957) 142-146. (Uses the theorem of Latimer and MacDuffee.)



510 OLGA TAUSSKY

J.-P. Serre, L'-invariant de Witt de la forme Tr(x?), Comment. Math. Helv. 59
(1984) 651-676.

O. Taussky, On the similarity transformation between an integral matrix with ir-
reducible characteristic polynomial and its transpose, Math. Ann. 166 (1966) 60-63.

D. I. Wallace, Conjugacy classes of hyperbolic matrices in SL(#, Z) and ideal classes
in an order, Trans. Amer. Math. Soc. 283 (1984) 177-184. (Uses the theorem of
Latimer and MacDuffee.)

W. C. Waterhouse, Scaled trace forms over number fields, Arch. Math. 47 (1986)
229-231.

3. CONCLUSION

I finish with brief, largely bibliographical, comments on three topics related
to my theme and a short list of problems.

GALOIS MODULES

Here Frohlich and his colleagues Taylor, Bushnell, Ullom, Queyrut,...
are leaders. He himself wrote the 1983 Ergebnisse volume Galois module
structure in algebraic number fields.

In his article in the 1981 Dekker book, Emmy Noether, A tribute to her Life
and Work, he says that he will concentrate on Galois module structure. He
considers her work there as ahead of her time and the developments came 40
years later. He refers to his paper in 1976, “Module conductors and module
resolvents.” I feel flattered to notice that he refers to a 1956 paper by M.
Newman and myself (discussed in chapter 2) and to a much-cited paper by
Leopoldt from 1959. As I pointed out earlier, our problem is now settled for
all groups. The Durham 1977 Proceedings are heavily loaded with relevant
material. In his 1976 lecture at the Kyoto number theory conference in honor
of Takagi he speaks about Hermitian Galois module structure.

Galois algebras seem to have been introduced by Hasse in 1948. The
1981 thesis of J. Brinkhuis, written under supervision by Frohlich, refers
to this reference. Frohlich himself has a paper on this and so has Maurer,
a paper entitled “... Stickelberger’s criterion on Galois algebras and tame
ramifications in algebraic number fields.”

THE USE OF QUATERNIONS

A number of results are mentioned here:

(1) Venkov, B. On the arithmetic of quaternions (Russian): H. P. Rehm
makes use of this paper to give a proof of a famous theorem of Gauss con-
cerning the number of representations of an integer n > 1, = 1,2(4) as a sum
of three squares.

(2) The 1981 Caltech thesis of P. Hanlon studies Rehm’s work and finds
an application of quaternions to the study of imaginary quadratic ring class
groups.
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(3) A paper by T. R. Shemanske on ternary quadratic forms and the class
number of imaginary quadratic fields.

USE OF CENTRAL POLYNOMIALS

The concept of central polynomials over a field was suggested by Kaplan-
sky, Amer. Math. Monthly 77 (1970). Central polynomials were then con-
structed by E. Formanek, J. Alg. 23 (1972) and by Y. P. Razmyslov, Transl.
USSR Izv. 7 (1973).

The Formanek version was used in O. Taussky, From cyclic algebras of
quadratic fields to central polynomials, J. Austral. Math. Soc. 28 and Some
noncommutative methods in algebraic number theory, Proc. of Symp. in
Honor of Emmy Noether’s 100th birthday.

PROBLEMS

Problem 1. In the section on Integral Matrices I report mainly on the 2 x 2
case—however, in my paper on composition of quadratic forms I include the
n x n case. Gauss did not have matrix theory, hence his work on quadratic
forms had to stop there. In my paper “From cyclic algebras of quadratic
fields to central polynomials” I also study » > 2. Although my papers on
Ideal Matrices and the Latimer and MacDuffee theorem contain results for
n > 2, my work on factoring an integral 2 x 2 matrix into the product of two
symmetric integral factors has not been generalized so far. Hence I pose this
as a problem.

Problem 11. In the 1964 Caltech thesis of my student L. L. Foster, the fol-
lowing special case of a problem was studied leading to diophantine problems
and other interesting observations:

Given two integral n x n matrices 4, B (may be depending on parame-
ters), in what fields can the eigenvalues of 4, B lie (for special values of the
parameters)? See Pac. J. Math. 18 (1966), 97-110. '

Problem 111. My work on det(AB — BA) for A, B integral 2 x 2 matrices,
both with irrational eigenvalues in Q(y/m), resp. Q(1/n) leads to a noncom-
mutative statement for the intersection of elements in these fields which are
norms. I suggest more work on this.
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