2019 Who Wants to Be a Mathematician Round One Qualifying Test KEY

1. What is the ones (units) digit of $2019^{2}-2018^{2}$?
a. 1
b. 3
c. 5
d. 7
d.
2. What is the area in the first quadrant bounded by the graph of $x+2 y=4$ and the x - and y-axes?
a. 1
b. 2
c. 4
c.
d. 8
3. Let $f(x)=x^{2}+7$. What is $f(f(2))$?
a. 11
b. 107
c. 121
d. 128
d.
4. The radius of a sphere is 6 cm . What is the sphere's volume divided by its surface area (ignore units)?
a. 1.5
b. 2
b.
c. 2.5
d. 3
5. Which of the following is the closest integer to the cube of $\tan (\pi / 3) ?(\pi / 3$ is in radians, not degrees)
a. 5
a.
b. 6
c. 7
d. 8
6. Let n represent a positive integer greater than 1 . The number of points of intersection of the graphs of $y=x^{n}$ and $y=n^{x}$ is
a. always odd
b. always even
c. odd when n is even and even when n is odd
d. even when n is even and odd when n is odd
c.
7. On a flat surface, a bug walks 1 foot north, 2 feet west, 3 feet south, 4 feet east, 5 feet north, and 6 feet west. It then walks straight back to its original starting point. How far did the bug walk total, in feet?
a. 21
b. 24
c. 26
c.
d. $21+\sqrt{5}$
8. Double the sum of the first 1,111 positive integers and subtract 1,111 . What is the result?
a. 616,605
b. $1,234,321$
c. $1,423,231$
d. 1,432,231
b.
9. Suppose $\log _{10} 8=r$ and $\log _{10} 9=s$. What is $\log _{10} 5$ in terms of r and/or s ?
a. $\sqrt[3]{r}+\sqrt{s}$
b. $(\sqrt[3]{r})(\sqrt{s})$
c. $(r / 3)+(s / 2)$
d. $1-(r / 3)$
d.
10. Which of the following is closest to the number of ordered pairs of points (m, n), where m and n are both between 1 and 100 inclusive and relatively prime (their greatest common divisor is 1$)$? [$(2,3)$ and $(3,2)$ count as two such points.]
a. 5,000
b. 6,000
c. 7,000
d. 8,000
b.
