# 2003 Annual Survey of the Mathematical Sciences 

# Updated Report on the 2002-2003 U.S. Doctoral Recipients Starting Salary Survey of the 2002-2003 U.S. Doctoral Recipients 

Ellen E. Kirkman, James W. Maxwell, and Colleen A. Rose

## Update on the 2002-2003 U.S. Doctoral Recipients

## Introduction

The Annual Survey of the Mathematical Sciences collects information each year about departments, faculties, and students in the mathematical sciences at four-year colleges and universities in the United States. Definitions of the various groups surveyed in the Annual Survey can be found on page 800 of this report.

This Second Report includes data from two parts of the 2003 Annual Survey. First, we update information about new doctoral recipients reported earlier in the February 2004 issue. Second, we present the starting salaries of the new doctoral recipients who responded to a follow-up survey.

The names of the 2002-2003 doctoral recipients and their thesis titles were published in "Doctoral Degrees Conferred" (Notices of the AMS, February 2004, pages 246-63). This list has been supplemented by twenty additional new doctorates. The supplemental listing appears at the end of this report on page 801.

Information about recipients of doctoral degrees awarded between July 1, 2002, and June 30, 2003, was collected from doctorate-granting departments beginning in late spring 2003 and from a follow-up census of individual degree recipients beginning in October. The "2003 Annual Survey First Report" (Notices of the AMS, February 2004, pages 218-33) presented survey results obtained about new doctoral recipients from the departments. Here we update information for new doctoral recipients


#### Abstract

This Second Report of the 2003 Annual Survey gives an update of the 2002-2003 new doctoral recipients from the First Report, which appeared in the Notices of the AMS in February 2004, pages 218 -33. Prior to 2000 this report included information about faculty size, departmental enrollments, majors, and graduate students for departments of mathematical sciences in four-year colleges and universities in the United States. This information is now published as a third report in the September Notices of the AMS. The First Report gave salary data for faculty members in these same departments. It also had a section on new doctoral recipients in statistics that is not updated here.

The 2003 Annual Survey represents the forty-seventh in an annual series begun in 1957 by the American Mathematical Society. The 2003 Survey is under the direction of the Data Committee, a joint committee of the American Mathematical Society, the American Statistical Association, the Institute of Mathematical Statistics, and the Mathematical Association of America. The current members of this committee are Amy Cohen-Corwin, Donald M. Davis, Lorraine Denby, Alexander J. Hahn, Naresh Jain, G. Samuel Jordan, Stephen F. Kennedy, Ellen E. Kirkman (chair), David J. Lutzer, and James W. Maxwell (ex officio). The committee is assisted by AMS survey analyst Colleen A. Rose. Comments or suggestions regarding this Survey Report may be directed to the committee.


using data gathered with a questionnaire, Employment Experiences of New Doctoral Recipients (EENDR). The EENDR was sent in early October 2003 to all new doctoral recipients whose address was known. When a new doctoral recipient did not respond or no address was known, information supplied by the department was used.

[^0]
## Highlights

- There were 1,037 doctoral recipients from U.S. institutions for 2002-2003, up 77 (8\%) from the previous year. Last year's number was the lowest since 1989-1990.
- The number of doctoral recipients who are U.S. citizens is 499 , up 71 (12\% increase) from last year's number, which was the lowest figure reported since 1989-1990. The percentage of U.S. citizens among all doctoral recipients this year is $48 \%$, up from $45 \%$ last year. The number of new doctoral recipients who are not U.S. citizens is 538 , up 6 from last year's number; this reverses a five-year trend of decline from 639 non-U.S. citizens in 1997-1998.
- Females totaled 308 (30\%) of all new doctoral recipients, up in number (and down in percentage) from 296 (31\%) last year. Of the 499 U.S. citizen new doctoral recipients, 158 are female (32\%, up from $30 \%$ last year). The highest percentage of females among the annual counts of U.S. doctoral recipients was $34 \%$, reported for 1998-1999.
- The number of doctoral recipients whose employment status is unknown is much higher this year than it has been in recent years. This year's report includes 193 new doctoral recipients of unknown employment status; last year this number was 94 . This fact should be considered in interpreting comparisons in employment data from this year and previous years.
- The final unemployment rate for 2002-2003 doctoral recipients was $5.0 \%$, the highest reported since 1996, when it was $8.1 \%$.
- Of the 792 new doctoral recipients known to have employment in fall 2003, 682 (86\%) new doctoral recipients found employment in the U.S; Iast year this percentage was $88 \%$.
- The number of new doctoral recipients taking positions in U.S. business and industry was 99 in fall 2003, a $27 \%$ decrease from last year's number; this number has been decreasing the past four years from the 223 reported in fall 2000 (a $56 \%$ decrease). The percentage of doctoral recipients employed in the U.S. who were hired in business and industry in the U.S. is $19 \%$ in fall 2002-2003, down from 24\% in 2001-2002 and from 30\% in 2000-2001.
- The number of doctoral recipients taking U.S. academic positions has been decreasing each of the past 5 years, from 610 in 1999 to 551 in 2003.
- The number of new doctoral recipients hired by master's and bachelor's institutions was 158 this year. This number is a 7\% increase in last year's figure of 148. This is the first increase reported since 1998.
- There were 551 new doctoral recipients responding to the EENDR survey; of the 469 who found employment in the U.S., $54 \%$ reported obtaining a permanent position (last year this percentage was 52\%).
- After showing a significant increase over the previous four years, there is a decline this year in the percentage of temporarily employed respondents who reported taking a postdoctoral position, from $83 \%$ in fall 2002 to $76 \%$ in fall 2003 . The number of respondents who reported taking a postdoctoral position in fall 2003 was 164, down from 203 for fall 2002.


## Updated Employment Status of 2002-2003

## U.S. Doctoral Recipients

Table 1A shows the fall and final counts of doctoral recipients in the mathematical sciences awarded by U.S. institutions in each year from 1993 through 2003. Final counts include those new doctoral recipients reported from departments who missed the deadline for inclusion in the First Report. Numbers in this table have been revised from reports prior to 1998-1999 to exclude new doctorates data from Group Vb departments, which are no longer surveyed. Reversing the downward trend of the past four years, this year the total number of new doc-

Table 1A: Annual U.S. Doctoral Recipients, Fall and Final Counts, 1993 to 2003

| Year | Fall | Final |
| :---: | :---: | :---: |
| $1993-1994$ | 1025 | 1034 |
| $1994-1995$ | 1148 | 1157 |
| $1995-1996$ | 1098 | 1099 |
| $1996-1997$ | 1123 | 1130 |
| $1997-1998$ | 1163 | 1176 |
| $1998-1999$ | 1133 | 1135 |
| $1999-2000$ | 1119 | 1127 |
| $2000-2001$ | 1008 | 1065 |
| $2001-2002$ | 948 | 960 |
| $2002-2003$ | 1017 | 1037 |

Table 1 B: Citizenship of Annual U.S. Doctoral Recipients, 1998 to 2003

| Year | U.S. | Non-U.S. | TOTAL |
| :---: | :---: | :---: | :---: |
| $1998-1999$ | 560 | 575 | 1135 |
| $1999-2000$ | 566 | 561 | 1127 |
| $2000-2001$ | 532 | 533 | 1065 |
| $2001-2002$ | 428 | 532 | 960 |
| $2002-2003$ | 499 | 538 | 1037 |

toral recipients is 1,037 , up from the previous year by 77; last year's number was the lowest since 1989-1990.

Table 1B shows trends in the number of new doctoral recipients for the past five years broken down

## Table 1C: 2002-2003 U.S. Doctoral Recipients by Type of Degree-Granting Department

|  | I (Pu) | I (Pr) | II | III | IV | Va |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | 258 | 154 | 171 | 122 | 241 | 91 |
| Percent | 25 | 15 | 16 | 12 | 23 | 9 |

by U.S. citizens and non-U.S. citizens. There was a drop of 98 new doctoral recipients from 1998-1999 to 2002-2003, mostly explained by a drop of 61 U.S. citizen new doctoral recipients. This year the

Table 2A: 2002-2003 U.S. Doctoral Recipients: Field of Thesis by Fall 2003 Employment Status, Updated April 2004

| TYPE OF EMPLOYER |  | FIELD OF THESIS |  |  |  |  |  |  |  |  |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Algebra Number Theory | Real, Comp. Funct., \& Analysis | Geometry/ Topology | Discr. Math./ Combin./ Logic/ Comp. Sci | Probability | Statistics/ | Applied | Numerica Analysis/ Approxi mations | Linear Nonlinear Optim./ Control | Differential, Integral, \& Difference Equations Equations | Math. Educ. | $\begin{aligned} & \text { Other/ } \\ & \text { Unknown } \end{aligned}$ |  |
|  |  | 29 | 8 | 13 | 4 | 5 | 0 | 5 | 6 | 1 | 12 | 0 | 1 | 84 |
| Group I (Private) |  | 14 | 5 | 9 | 4 | 1 | 2 | 3 | 0 | 1 | 14 | 0 | 0 | 53 |
|  |  | 7 | 3 | 9 | 3 | 2 | 2 | 9 | 3 | 4 | 10 | 2 | 0 | 54 |
| Group II Group III |  | 0 | 4 | 1 | 3 | 0 | 10 | 1 | 1 | 1 | 3 | 1 | 0 | 25 |
| Group IV |  | 0 | 0 | 1 | 0 | 2 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 39 |
| Group Va |  | 0 | 0 | 0 | 2 | 1 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 9 |
|  |  | 8 | 9 | 8 | 3 | 3 | 6 | 4 | 2 | 0 | 2 | 3 | 2 | 50 |
| Master's Bachelor's |  | 30 | 11 | 16 | 8 | 1 | 7 | 6 | 7 | 4 | 13 | 5 | 0 | 108 |
|  |  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 3 |
| Other Academic Dept. |  | 7 | 3 | 2 | 5 | 3 | 56 | 15 | 3 | 1 | 6 | 6 | 0 | 107 |
| Research Institute/ |  | 3 | 0 | 0 | 3 | 0 | 11 | 0 | 2 | 0 | 0 | 0 | 0 | 19 |
| Government |  | 6 | 0 | 1 | 2 | 2 | 11 | 3 | 4 | 0 | 3 | 0 | 0 | 32 |
| Business and Industry |  | 9 | 6 | 2 | 8 | 4 | 50 | 11 | 5 | 3 | 1 | 0 | 0 | 99 |
| Non-U.S. Academic <br> Non-U.S. Nonacademic |  | 22 | 5 | 10 | 8 | 0 | 14 | 6 | 14 | 2 | 15 | 1 | 0 | 97 |
|  |  | 2 | 1 | 1 | 0 | 0 | 4 | 1 | 2 | 0 | 2 | 0 | 0 | 13 |
| Not Seeking Employment Still Seeking Employment Unknown (U.S.) Unknown (non-U.S.)' |  | 1 | 1 | 0 | 0 | 0 | 5 | 0 | 2 | 0 | 1 | 0 | 0 | 10 |
|  |  | 8 | 1 | 3 | 2 | 0 | 8 | 7 | 4 | 3 | 6 | 0 | 0 | 42 |
|  |  | 11 | 10 | 9 | 8 | 0 | 34 | 17 | 8 | 1 | 6 | 1 | 4 | 109 |
|  |  | 12 | 8 | 9 | 6 | 5 | 19 | 14 | 6 | 0 | 4 | 1 | 0 | 84 |
| TOTAL |  | 169 | 75 | 94 | 69 | 29 | 275 | 107 | 72 | 21 | 99 | 20 | 7 | 1037 |
| Column <br> Subtotals | Male | 133 | 61 | 69 | 52 | 21 | 161 | 75 | 55 | 18 | 73 | 6 | 5 | 729 |
|  | Female | 36 | 14 | 25 | 17 | 8 | 114 | 32 | 17 | 3 | 26 | 14 | 2 | 308 |

${ }^{1}$ Includes those whose status is reported as "unknown" or "still seeking employment".

Table 2B: 2002-2003 U.S. Doctoral Recipients: Type of Degree-Granting Department by Fall 2003 Employment Status, Updated April 2004

| TYPE OF EMPLOYER |  | TYPE OF DOCTORAL DEGREE-GRANTING DEPARTMENT |  |  |  |  |  | TOTAL | Row Subtotals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Group I (Public) Math. | Group I (Private) Math. | Group II Math. | Group III Math. | Group IV Statistics | Group Va Applied Math. |  |  |  |
| Group I (Public) |  | 44 | 25 | 9 | 2 | 0 | 4 | 84 | 64 | 20 |
| Group I (Private) |  | 18 | 29 | 1 | 0 | 2 | 3 | 53 | 43 | 10 |
| Group II |  | 17 | 5 | 24 | 3 | 2 | 3 | 54 | 40 | 14 |
| Group III |  | 2 | 1 | 5 | 10 | 4 | 3 | 25 | 19 | 6 |
| Group IV |  | , | 2 | 1 | 0 | 35 | 0 | 39 | 20 | 19 |
| Group Va |  | 1 | 0 | 0 | 0 | 1 | 7 | 9 | 6 | 3 |
| Master's |  | 8 | 2 | 19 | 15 | 6 | 0 | 50 | 27 | 23 |
| Bachelor's |  | 20 | 11 | 45 | 19 | 7 | 6 | 108 | 73 | 35 |
| Two-Year College |  | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 1 | 2 |
| Other Academic Dept. |  | 10 | 8 | 11 | 12 | 52 | 14 | 107 | 66 | 41 |
| Research Institute/ Other Nonprofit |  | 2 | 7 | 0 | 0 | 10 | 0 | 19 | 9 | 10 |
| Government |  | 5 | 2 | 8 | 2 | 8 | 7 | 32 | 19 | 13 |
| Business and Industry |  | 19 | 14 | 5 | 8 | 46 | 7 | 99 | 75 | 24 |
| Non-U.S. Academic <br> Non-U.S. Nonacademic |  | 33 | 21 | 11 | 14 | 13 | 5 | 97 | 76 | 21 |
|  |  | 2 | 2 | 3 | 2 | 2 | 2 | 13 | 12 | 1 |
| Not Seeking Employment Still Seeking Employment Unknown (U.S.) Unknown (non-U.S.)' |  | 2 | 0 | 2 | 2 | 4 | 0 | 10 | 7 | 3 |
|  |  | 7 | 8 | 8 | 11 | 4 | 4 | 42 | 27 | 15 |
|  |  | 34 | 8 | 9 | 13 | 31 | 14 | 109 | 81 | 28 |
|  |  | 33 | 9 | 7 | 9 | 14 | 12 | 84 | 64 | 20 |
| TOTAL |  | 258 | 154 | 171 | 122 | 241 | 91 | 1037 | 729 | 308 |
| Column <br> Subtotals | Male | 201 | 126 | 121 | 68 | 141 | 72 | 729 |  |  |
|  | Female | 57 | 28 | 50 | 54 | 100 | 19 | 308 |  |  |

${ }^{1}$ Includes those whose status is reported as "unknown" or "still seeking employment".

Table 2C: 2002-2003 U.S. Doctoral Recipients: Field of Thesis by Type of Degree-Granting Department, Updated April 2004

| TYPE OF DOCTORAL DEGREE-GRANTING DEPARTMENT | FIELD OF THESIS |  |  |  |  |  |  |  |  |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Algebra Number Theory | Real, Comp. Funct., \& Harmonic Analysis | Geometry/ Topology | Discr. Math./ Combin./ Logic/ Comp. Sci. | Probability | Statistics/ <br> Biostat. | Applied Math. | Numerical Analysis/ Approximations |  | Differential, Integral, \& Difference Equations | Math. Educ. | Other/ Unknown |  |
| Group I (Public) | 72 | 33 | 41 | 21 | 11 | 4 | 16 | 15 | 5 | 38 | 1 | 1 | 258 |
| Group I (Private) | 43 | 12 | 25 | 15 | 5 | 7 | 19 | 8 | 1 | 17 | 0 | 2 | 154 |
| Group II | 39 | 17 | 23 | 10 | 5 | 6 | 21 | 18 | 7 | 22 | 2 | 1 | 171 |
| Group III | 13 | 13 | 4 | 11 | 2 | 17 | 11 | 19 | 1 | 14 | 17 | 0 | 122 |
| Group IV | 0 | 0 | 0 | 0 | 4 | 232 | 2 | 0 | 0 | 0 | 0 | 3 | 241 |
| Group Va | 2 | 0 | 1 | 12 | 2 | 9 | 38 | 12 | 7 | 8 | 0 | 0 | 91 |
| TOTAL | 169 | 75 | 94 | 69 | 29 | 275 | 107 | 72 | 21 | 99 | 20 | 7 | 1037 |

Table 2D: Percentage of Total Employed New Doctoral Recipients by Type of Employer, Fall 1999 to Fall 2003

| $\%$ | U.S. Employed |  | Non-U.S. Employed |  | TOTAL <br> NUMBER |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Academic | Nonacademic | Academic | Nonacademic | EMPLOYED |$|$| Fall 1999 | 64 | 23 | 11 |
| :---: | :---: | :---: | :---: |
| Fall 2000 | 62 | 28 | 10 |
| Fall 2001 | 63 | 27 | 9 |
| Fall 2002 | 67 | 22 | 10 |
| Fall 2003 | 70 | 17 | 12 |
| 957 |  |  |  |

number of new doctoral recipients who are U.S. citizens is 499, an increase of 71 over last year; last year's number of U.S. citizens was the lowest figure reported since 1989-1990. The all-time high
number of non-U.S. citizen new doctoral recipients was 679 in 1992-1993.

Table 1C gives a breakdown of the 1,037 doctoral degrees awarded in the mathematical sciences between July 1, 2002, and June 30, 2003, by type of degree-granting department.

Tables 2A, 2B, and 2C display updates of employment data, found in these same tables in the First Report, for the fall count of 2002-2003 doctoral recipients plus twenty additional doctoral recipients reported late. These tables are partitioned by field of thesis research, by the survey group of their degree department, and by type of employer. At the time of this Second Report, the fall 2003 employment status of 844 of the 1,037 doctoral recipients was known.

The fall 2003 unemployment rate for new doctoral recipients, based on information gathered by

Figure 1: Percentage of New Doctoral Recipients Unemployed, As Reported in the Respective Annual Survey Second Reports, 1979 to 2003

the time of the Second Report, was $5.0 \%$. This is the highest unemployment rate since 1996, when it was 8.1\%. Figure 1 presents the fall 1979 through fall 2003 trend in the final unemployment rate of new doctoral recipients. The counts on which these rates are determined do not include those new doctoral recipients whose fall employment status was unknown at the time of the Second Report. Although the number of recipients whose employment status was reported as unknown had been declining, from 150 in 1997 to a low of 94 in 2002, this year it spiked to a high of 193. For future reports, measures are being taken which should reduce the number of recipients whose employment status gets reported as unknown. Note that prior to 1999 the new doctoral recipients from Group Vb are included in the total unemployment rate for each year.

Of the 844 new doctoral recipients whose employment is known, 682 were employed in the U.S., 110 were employed outside the U.S., 42 were still seeking employment, and 10 were not seeking employment.

Table 2D presents the trend in the percentage of employed new doctoral recipients by type of employer for the last five years. Academic employment includes those employed by research institutes and other nonprofits. The percentage of the total employed new doctoral recipients that are in U.S. academic positions is at a five-year high, while the percentage of the total employed in U.S. nonacademic positions is at a five-year low.

Among new doctoral recipients who are employed, the percentage taking nonacademic employment (U.S. government, U.S. business and industry, and non-U.S. nonacademic) varied significantly by field of thesis. For those whose field of thesis is in the first three columns in Table 2A, this percentage is the lowest, at $11 \%$ (up from 9\%), while the percentage

Table 3A: Number of New Doctoral Recipients Taking Positions in Business and Industry in the U.S. by Type of Degree-Granting Department, Fall 1999 to Fall 2003

| Group | I (Pu) | I (Pr) | II | III | IV | Va | TOTAL |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall 1999 | 32 | 24 | 28 | 21 | 66 | 14 | $\mathbf{1 8 5}$ |
| Fall 2000 | 33 | 28 | 37 | 24 | 83 | 18 | 223 |
| Fall 2001 | 28 | 15 | 27 | 26 | 75 | 23 | 194 |
| Fall 2002 | 18 | 12 | 19 | 7 | 65 | 15 | 136 |
| Fall 2003 | 19 | 14 | 5 | 8 | 46 | 7 | 99 |

for those with theses in probability or statistics is the highest, at 30\% (down from 39\%).

Tables 3A through 3D first appeared in the First Report for 2000-2001, although they do not have the same table numbers in that report. They have all been updated with information obtained from the in-
dividual new doctoral recipients who responded to the follow-up questionnaire. The next few paragraphs discuss some of the information presented in these tables.

Table 3B: Number of New Doctoral Recipients Taking U.S. Academic Positions by Type of Degree-Granting Department, Fall 1999 to Fall 2003

| Group | I (Pu) | I (Pr) | II | III | IV | Va | TOTAL |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall 1999 | 166 | 91 | 146 | 82 | 86 | 39 | $\mathbf{6 1 0}$ |
| Fall 2000 | 144 | 82 | 126 | 79 | 131 | 28 | 590 |
| Fall 2001 | 159 | 71 | 126 | 80 | 108 | 30 | 574 |
| Fall 2002 | 133 | 86 | 107 | 91 | 102 | 34 | 553 |
| Fall 2003 | 123 | 90 | 118 | 61 | 119 | 40 | 551 |

Table 3A shows that the fall 2003 total number of doctoral recipients taking positions in business or industry is 99; this number reflects a continued decline, and a 56\% decrease since fall 2000's high of 223 . While some groups have shown a slight increase, Groups II and IV show the largest decreases over last year.

Table 3C: Number of New Doctoral Recipients Taking U.S. Academic Positions by Type of Hiring Department, Fall 1999 to Fall 2003

| Group | I-III | IV | Va | M\&B | Other | TOTAL |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall 1999 | 233 | 47 | 19 | 193 | 118 | $\mathbf{6 1 0}$ |
| Fall 2000 | 216 | 51 | 11 | 180 | 132 | 590 |
| Fall 2001 | 214 | 49 | 11 | 178 | 122 | $\mathbf{5 7 4}$ |
| Fall 2002 | 222 | 45 | 10 | 148 | 128 | 553 |
| Fall 2003 | 216 | 39 | 9 | 158 | 129 | 551 |

Table 3C shows that the number of new doctoral recipients taking U.S. academic positions has continued to decline over each of the past five years, from 610 in 1999 to 551 in 2003. The number hired by Groups M and B has dropped each of the years 1999-2002, but is slightly up this year; there has been a $18 \%$

Table 3D: Females as a Percentage of 2002-2003 U.S. Doctoral Recipients Produced by and Hired by Doctoral-Granting Groups, Fall 2003

| $\%$ | I (Pu) | I (Pr) | II | III | IV | Va | TOTAL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Produced | 22 | 18 | 29 | 44 | 41 | 21 | 30 |
| Hired | 24 | 19 | 26 | 24 | 49 | 33 | 27 |

decrease from fall 1999 to fall 2003. This decline may reflect more hiring at these institutions of

Table 3E: 2002-2003 Male U.S. Doctoral Recipients: Type of Citizenship by Fall 2003 Employment Status

| TYPE OF EMPLOYER | CITIZENSHIP |  |  |  | TOTAL MALE DOCTORAL RECIPIENTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | U.S. CITIZENS | NON-U.S. CITIZENS |  |  |  |
|  |  | Permanent Visa | Temporary Visa | Unknown Visa |  |
| U.S. Employer | 255 | 16 | 173 | 18 | 462 |
| U.S. Academic | 205 | 14 | 137 | 12 | 368 |
| Groups I, II, III, and Va | 92 | 4 | 68 | 8 | 172 |
| Group IV | 12 | 1 | 7 | 0 | 20 |
| Non-Ph.D. Department | 99 | 9 | 55 | 4 | 167 |
| Research Institute/Other Nonprofit | 2 | 0 | 7 | 0 | 9 |
| U.S. Nonacademic | 50 | 2 | 36 | 6 | 94 |
| Non-U.S. Employer | 11 | 0 | 75 | 2 | 88 |
| Non-U.S. Academic | 9 | 0 | 66 | 1 | 76 |
| Non-U.S. Nonacademic | 2 | 0 | 9 | 1 | 12 |
| Not Seeking Employment | 6 | 0 | 1 | 0 | 7 |
| Still Seeking Employment | 13 | 2 | 12 | 0 | 27 |
| Subtotal | 285 | 18 | 261 | 20 | 584 |
| Unknown (U.S.) | 55 | 6 | 18 | 2 | 81 |
| Unknown (non-U.S.) ${ }^{1}$ | 1 | 0 | 50 | 13 | 64 |
| TOTAL | 341 | 24 | 329 | 35 | 729 |

' Includes those whose status is reported as "unknown" or "still seeking employment".

Table 3F: 2002-2003 Female U.S. Doctoral Recipients: Type of Citizenship by Fall 2003 Employment Status

| TYPE OF EMPLOYER | CITIZENSHIP |  |  |  | TOTAL FEMALE DOCTORAL RECIPIENTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | U.S. CITIZENS | NON-U.S. CITIZENS |  |  |  |
|  |  | Permanent Visa | Temporary Visa | Unknown Visa |  |
| U.S. Employer | 130 | 16 | 66 | 8 | 220 |
| U.S. Academic | 107 | 12 | 57 | 7 | 183 |
| Groups I, II, III, and Va | 23 | 3 | 24 | 3 | 53 |
| Group IV | 10 |  | 7 | 1 | 19 |
| Non-Ph.D. Department | 68 | 7 | 24 | 2 | 101 |
| Research Institute/Other Nonprofit | 6 | 1 | 2 |  | 10 |
| U.S. Nonacademic | 23 | 4 | 9 | 1 | 37 |
| Non-U.S. Employer | 3 | 1 | 18 | 0 | 22 |
| Non-U.S. Academic | 3 | 1 | 17 | 0 | 21 |
| Non-U.S. Nonacademic | 0 | 0 | 1 | 0 | 1 |
| Not Seeking Employment | 2 | 0 | 1 | 0 | 3 |
| Still Seeking Employment | 9 | 4 | 2 | 0 | 15 |
| Subtotal | 144 | 21 | 87 | 8 | 260 |
| Unknown (U.S.) | 14 | 5 | 7 | 2 | 28 |
| Unknown (non-U.S.)' | 0 | 0 | 15 | 5 | 20 |
| TOTAL | 158 | 26 | 109 | 15 | 308 |

' Includes those whose status is reported as "unknown" or "still seeking employment".
individuals completing a postdoctoral appointment.

Table 3D gives information about the production and hiring of female new doctoral recipients in the doctoral-granting departments of this survey. From Table 3D we see that the percentage of females hired ranges from a high of $49 \%$ in Group IV to a low of $19 \%$ in Group I (private).
Updated Information about 2002-2003 U.S. Doctoral Recipients by Sex and Citizenship
Tables 3E and 3F show the sex and citizenship of the 1,037 new doctoral recipients and the fact that 682 new doctoral recipients found jobs in the U.S. this year. This is $86 \%$ of the 792 new
doctoral recipients known to have jobs in fall 2003. Last year this percentage was $88 \%$.

Sex and citizenship is known for all of the 1,037 new doctoral recipients. The final count of new doctoral recipients who are U.S. citizens is 499 (48\%). For the last five years this figure has remained very close to $50 \%$, the largest percentage reported by the Annual Survey since the mid-1980s. Pages 224-6 of the First Report present further information related to the citizenship of the 2002-2003 new doctoral recipients.

Of the 499 U.S. citizen new doctoral recipients reported for 2002-2003, 158 are female and 341 are male. While females accounted for $32 \%$ of the

Table 3G: Number of 2002-2003 New Doctoral Recipients Employed in the U.S. by Citizenship and Type of Employer

| U.S. EMPLOYER | CITIZENSHIP |  |  |
| :--- | ---: | :---: | :---: |
|  | U.S. | Non-U.S. | TOTAL |
| Academic, Groups I-Va | 137 | 127 | $\mathbf{2 6 4}$ |
| Academic, Other | 175 | 112 | $\mathbf{2 8 7}$ |
| Nonacademic | 73 | 58 | 131 |
| TOTAL | 385 | 297 | $\mathbf{6 8 2}$ |

U.S. citizen total, both figures represent an increase over last year's counts of 130 and 298, respectively.

Table 3G shows that U.S. academic doctoral departments, Groups I through Va, hired 52\% U.S. citizens, while groups M, B, and all other academic departments hired 61\% U.S. citizens. U.S. citizens represented $56 \%$ of those hired into nonacademic positions. Among the 682 new 2002-2003 doctoral recipients employed in the U.S., $19 \%$ took nonacademic employment (government or business and industry.) This percentage is down from $24 \%$ in 2001-2002 and from 30\% in 2000-2001.

New Information from the EENDR Survey
Of the 1,017 new doctoral recipients reported in the First Report, the 910 whose addresses were known were sent the Employment Experiences of New Doctoral Recipients (EENDR) survey in October 2003, and 551 (54\%) responded. The response rates varied considerably among the various subgroups of new doctoral recipients defined by their employment status as reported by departments. Among those who were employed, the highest response rate, $74 \%$, was from those in academia in the U.S., while the lowest, $57 \%$, was from those in U.S. nonacademic.

The EENDR gathered details on employment experiences not available through departments. The rest of this section presents additional information available on this subset of the 2002-2003 doctoral recipients.

Table 4A provides the trend in EENDR respondents taking permanent and temporary positions in the U.S for fall 1999 through fall 2003. This year we see that among the 469 employed in the U.S., 253 reported obtaining a permanent position and 216 a temporary position. Of the 216 in temporary positions,

Table 4A: Number (and Percentage) of Annual EENDR Respondents Taking U.S. Positions by Job Status, Fall 1999 to Fall 2003

| U.S. Employed | Fall 1999 | Fall 2000 | Fall 2001 | Fall 2002 | Fall 2003 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| TOTAL | 512 | 536 | $\mathbf{4 7 3}$ | 510 | 469 |
| Permanent | $273(53)$ | $317(59)$ | $266(56)$ | $264(52)$ | $253(54)$ |
| Temporary | $237(46)$ | $218(41)$ | $205(43)$ | $245(48)$ | $216(46)$ |
| Perm not avail. | $101(43)$ | $92(42)$ | $107(52)$ | $90(37)$ | $87(40)$ |
| Postdoctorate | $155(65)$ | $157(72)$ | $143(70)$ | $203(83)$ | $164(76)$ |
| Perm not avail. | $58(37)$ | $55(35)$ | $42(29)$ | $69(34)$ | $53(32)$ |
| Unknown | 2 | 1 | 2 | 1 | 0 |

Table 4B: Percentage of Annual EENDR Respondents Taking U.S. Positions by Employment Sector within Job Status, Fall 1999 to Fall 2003

| U.S. Employed | Fall 1999 | Fall 2000 | Fall 2001 | Fall 2002 | Fall 2003 |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Permanent |  |  |  |  |  |
| $\quad$ Academia | 59 | 59 | 62 | 70 | 76 |
| Government | 4 | 4 | 6 | 6 | 4 |
| Business/Ind. | 37 | 36 | 32 | 23 | 20 |
| Temporary |  |  |  |  |  |
| Academia | 94 | 95 | 95 | 93 | 94 |
| Government | 5 | 2 | 4 | 6 | 3 |
| Business/Ind. | 0 | 2 | 0 | 1 | 3 |

87 (40\%) reported taking temporary employment because a suitable permanent position was not available and 164 (76\%) classified their position as postdoctoral. Furthermore, among those in postdoctoral positions, $32 \%$ responded that they took the position because a suitable permanent position was not available. Of particular note in Table 4A is that after showing a $13 \%$ increase last year, this year there is a decline in the percentage of temporarily employed respondents who reported

Figure 2: Age Distribution of 2002-2003 EENDR Respondents

taking a postdoctoral position; last year the percentage of temporarily employed respondents who were hired in postdoctoral positions was $83 \%$, and this year it was $76 \%$. The figures reported in this table for fall 2001 and fall 2002 have been corrected, as they were incorrectly reported on page 807 of the "2002 Annual Survey of the Mathematical Sciences Second Report" (Notices of the AMS, August 2003).

Table 4B shows the employment trends of permanent and temporary positions broken down by sector for the last five years. There has been a continuing increase in the proportion of EENDR respondents taking permanent employment in academia and an offsetting decline in the proportion taking permanent positions in business and industry.

Among the 253 who reported obtaining a permanent position in the U.S. in fall 2003, $76 \%$ were employed in academia (including $3 \%$ in research institutes and other nonprofits), $4 \%$ in government, and $20 \%$ in business or industry. Women held $37 \%$ of the permanent positions.

Among the 216 individuals with temporary employment in the U.S. this year, $94 \%$ were employed in academia (including 5\% in research institutes and other nonprofits), $3 \%$ in government, and $3 \%$ in business or industry.

Figure 2 gives the age distribution of the 551 new doctoral recipients who responded to this question. The median age of new doctoral recipients was 30 years, while the mean age was 32 years. The first and third quartiles were 28 and 34 years, respectively. These figures are the same as those reported last year and very similar to those reported in previous years.

## Previous Annual Survey Reports

The 2003 First Annual Survey Report was published in the Notices of the AMS in the February 2004 issue. For the last full year of reports, the 2002 First, Second, and Third Annual Survey Reports were published in the Notices of the AMS in the February, August, and September 2003 issues respectively. These reports and earlier reports, as well as a wealth of other information from these surveys, are available on the AMS website at www.ams.org/ employment/surveyreports.htm1.

## Starting Salary Survey of the 2002-2003 U.S. Doctoral Recipients

The starting salary figures for 2003 were compiled from information gathered on the EENDR questionnaires sent to individuals who received doctoral degrees in the mathematical sciences during the 2002-2003 academic year from universities in the United States (see previous section for more details).

The questionnaires were distributed to 910 recipients of degrees using addresses provided by the departments granting the degrees; 551 individuals responded between late October and April. Responses with insufficient data or from individuals who indicated they had part-time or non-U.S. employment were excluded. Numbers of usable responses for each salary category are reported in the following tables.

Readers should be warned that the data in this report are obtained from a self-selected sample, and inferences from them may not be representative of the population.

Key to Tables. Salaries are listed in hundreds of dollars. Nine-month salaries are based on 9-10 months' teaching and/or research, not adding extra stipends for summer grants or summer teaching or the equivalent. Years listed denote the survey cycle in which the doctorate was received. For example: survey cycle July 1, 2002 -June 30, 2003 is designated as 2003. Salaries are those reported for the fall immediately following the survey cycle. M and F are male and female respectively. Some persons receiving a doctoral degree had been employed in their present position for several years, so those who had "one year or less experience" were analyzed separately from the total. Male and female figures are not provided when the number of salaries available for analysis in a particular category was five or fewer. Also, quartile figures are not available for 1970 through 1980. All categories of "Teaching/Teaching and Research" and "Research Only" contain those recipients employed at academic institutions only. The "Academic Research Only, 9-10-Month Salaries" category was dropped from the published analyses in 1998 because so few recipients respond in this category that the data were not considered meaningful. Starting salaries for those reporting a 9-10-month salary postdoctoral position are available for a sixth year. These salaries are also included within the "Academic Teaching/Teaching and Research, 9-10-Month Salaries" table and boxplot on page 797.

Academic Teaching/Teaching and Research 9-10-Month Salaries (in hundreds of dollars)

| Ph.D. <br> Year | Min | $\mathrm{Q}_{1}$ | Median | $\mathrm{Q}_{3}$ | Max | $\begin{aligned} & \text { Reported } \\ & \text { Median in } \\ & 2003 \$ \$ \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 85 | --- | 110 | --- | 195 | 422 |
| 1975 | 90 | 120 | 128 | 135 | 173 | 356 |
| 1980 | 105 | 155 | 171 | 185 | 250 | 334 |
| 1985 | 170 | 230 | 250 | 270 | 380 | 379 |
| 1990 | 230 | 305 | 320 | 350 | 710 | 414 |
| 1995 | 220 | 320 | 350 | 382 | 640 | 402 |
| 1996 | 240 | 333 | 360 | 400 | 636 | 405 |
| 1997 | 180 | 340 | 366 | 400 | 840 | 405 |
| 1998 | 140 | 340 | 370 | 410 | 700 | 405 |
| 1999 | 180 | 360 | 400 | 430 | 700 | 432 |
| 2000 | 250 | 380 | 415 | 450 | 650 | 439 |
| 2001 | 259 | 400 | 420 | 461 | 660 | 434 |
| 2002 | 230 | 400 | 450 | 500 | 840 | 457 |
| 2003 | 220 | 415 | 450 | 510 | 920 | 450 |
| 1999 M | 220 | 370 | 400 | 430 | 700 |  |
| 1999 F | 180 | 350 | 390 | 420 | 540 |  |
| 2000 M | 250 | 380 | 415 | 450 | 650 |  |
| 2000 F | 321 | 380 | 413 | 450 | 620 |  |
| 2001 M | 259 | 400 | 430 | 475 | 660 |  |
| 2001 F | 310 | 390 | 413 | 443 | 620 |  |
| 2002 M | 230 | 420 | 450 | 500 | 840 |  |
| 2002 F | 300 | 400 | 441 | 498 | 610 |  |
| Total (168 male/72 female) |  |  |  |  |  |  |
| 2003 M | 220 | 420 | 450 | 509 | 855 |  |
| 2003 F | 359 | 414 | 444 | 512 | 920 |  |
| One year or less experience ( $143 \mathrm{male} / 54$ female) |  |  |  |  |  |  |
| 2003 M | 220 | 420 | 450 | 505 | 855 |  |
| 2003 F | 359 | 411 | 434 | 501 | 700 |  |



Academic Postdoctorates 9-10-Month Salaries
(in hundreds of dollars)

| Ph.D. <br> Year | Min | $\mathrm{Q}_{1}$ | Median | $\mathrm{Q}_{3}$ | Max | Reported <br> Median in <br> $2003 \$$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 180 | 350 | 385 | 410 | 450 | 399 |
| 1998 | 290 | 350 | 390 | 420 | 500 | 399 |
| 1999 | 130 | 365 | 400 | 418 | 540 | 404 |
| 2000 | 300 | 385 | 420 | 450 | 550 | 415 |
| 2001 | 250 | 400 | 425 | 450 | 566 | 410 |
| 2002 | 230 | 425 | 450 | 487 | 595 | 430 |
| 2003 | 240 | 420 | 450 | 480 | 600 | 450 |
| 1999 M | 220 | 373 | 400 | 428 | 540 |  |
| 1999 F | 130 | 350 | 390 | 410 | 475 |  |
| 2000 M | 300 | 390 | 420 | 450 | 550 |  |
| 2000 F | 360 | 389 | 448 | 458 | 544 |  |
| 2001 M | 250 | 400 | 430 | 454 | 566 |  |
| 2001 F | 310 | 395 | 421 | 438 | 490 |  |
| 2002M | 230 | 425 | 450 | 488 | 595 |  |
| 2002 F | 380 | 430 | 450 | 485 | 589 |  |
| Total (67 male/16 female) |  |  |  |  |  |  |
| 2003 M | 240 | 420 | 450 | 485 | 600 |  |
| 2003 F | 359 | 408 | 449 | 459 | 510 |  |



Academic Teaching/Teaching and Research
11-12-Month Salaries
(in hundreds of dollars)

| Ph.D. Year | Min | $\mathrm{Q}_{1}$ | Median | $\mathrm{Q}_{3}$ | Max | Reported Median in 2003 \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 95 | --- | 128 | --- | 200 | 491 |
| 1975 | 87 | --- | 145 | - | 204 | 403 |
| 1980 | 143 | --- | 195 | --- | 350 | 381 |
| 1985 | 220 | 230 | 273 | 300 | 470 | 414 |
| 1990 | 225 | 318 | 365 | 404 | 670 | 473 |
| 1995 | 300 | 354 | 410 | 478 | 600 | 470 |
| 1996 | 150 | 302 | 340 | 390 | 720 | 383 |
| 1997 | 260 | 370 | 400 | 497 | 650 | 443 |
| 1998 | 275 | 405 | 480 | 575 | 700 | 526 |
| 1999 | 200 | 374 | 420 | 469 | 650 | 453 |
| 2000 | 300 | 400 | 485 | 600 | 1170 | 512 |
| 2001 | 350 | 420 | 465 | 615 | 870 | 480 |
| 2002 | 310 | 439 | 500 | 597 | 840 | 508 |
| 2003 | 345 | 438 | 475 | 550 | 780 | 475 |
| 1999 M | 280 | 370 | 420 | 458 | 650 |  |
| 1999 F | 200 | 393 | 435 | 590 | 630 |  |
| 2000 M | 300 | 390 | 460 | 650 | 1170 |  |
| 2000 F | 395 | 465 | 500 | 570 | 750 |  |
| 2001 M | 350 | 420 | 443 | 498 | 870 |  |
| 2001 F | 380 | 465 | 588 | 658 | 750 |  |
| 2002 M | 310 | 420 | 485 | 595 | 840 |  |
| 2002 F | 400 | 453 | 500 | 558 | 700 |  |
| Total (28 male/12 female) |  |  |  |  |  |  |
| 2003 M | 397 | 440 | 490 | 555 | 780 |  |
| 2003 F | 345 | 400 | 440 | 513 | 620 |  |
| One year or less experience (21 male/10 female) |  |  |  |  |  |  |
| 2003 M | 397 | 440 | 470 | 520 | 700 |  |
| 2003 F | 345 | 400 | 433 | 455 | 620 |  |



Academic Research Only 11-12-Month Salaries (in hundreds of dollars)

| Ph.D. Year | Min | $\mathrm{Q}_{1}$ | Median | $\mathrm{Q}_{3}$ | Max | Reported Median in 2003 \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 90 | --- | 120 | --- | 205 | 461 |
| 1975 | 90 | --- | 119 | --- | 180 | 331 |
| 1980 | 120 | --- | 180 | --- | 321 | 352 |
| 1985 | 190 | 295 | 342 | 400 | 520 | 518 |
| 1990 | 180 | 280 | 300 | 365 | 546 | 389 |
| 1995 | 196 | 280 | 340 | 370 | 587 | 390 |
| 1996 | 192 | 270 | 330 | 400 | 585 | 372 |
| 1997 | 190 | 300 | 350 | 400 | 600 | 388 |
| 1998 | 200 | 333 | 360 | 428 | 617 | 394 |
| 1999 | 270 | 390 | 440 | 500 | 720 | 475 |
| 2000 | 300 | 384 | 400 | 555 | 1000 | 423 |
| 2001 | 300 | 367 | 420 | 625 | 800 | 434 |
| 2002 | 270 | 380 | 440 | 500 | 700 | 447 |
| 2003 | 300 | 415 | 470 | 613 | 900 | 470 |
| 1999 M | 270 | 383 | 400 | 493 | 600 |  |
| 1999 F | 340 | 468 | 530 | 581 | 720 |  |
| 2000 M | 300 | 390 | 400 | 486 | 1000 |  |
| 2000 F | 300 | 360 | 410 | 580 | 630 |  |
| 2001 M | 300 | 348 | 425 | 655 | 800 |  |
| 2001 F | 342 | 400 | 420 | 588 | 700 |  |
| 2002 M | 270 | 388 | 440 | 500 | 650 |  |
| 2002 F | 310 | 350 | 440 | 505 | 700 |  |
| Total (29 male/19 female) |  |  |  |  |  |  |
| 2003 M | 300 | 420 | 450 | 510 | 820 |  |
| 2003 F | 310 | 390 | 480 | 650 | 900 |  |
| One year or less experience (24 male/16 female) |  |  |  |  |  |  |
| 2003 M | 300 | 400 | 440 | 496 | 770 |  |
| 2003 F | 330 | 405 | 470 | 613 | 720 |  |



Government 11-12-Month Salaries (in hundreds of dollars)

| Ph.D. Year | Min | $\mathrm{Q}_{1}$ | Median | $\mathrm{Q}_{3}$ | Max | $\begin{aligned} & \text { Reported } \\ & \text { Median in } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 100 | --- | 150 | --- | 223 | 576 |
| 1975 | 78 | --- | 182 | --- | 247 | 506 |
| 1980 | 156 | --- | 244 | --- | 501 | 477 |
| 1985 | 263 | 294 | 325 | 381 | 440 | 493 |
| 1990 | 320 | 345 | 378 | 430 | 587 | 490 |
| 1995 | 370 | 440 | 494 | 507 | 650 | 567 |
| 1996 | 360 | 420 | 427 | 504 | 650 | 481 |
| 1997 | 350 | 454 | 573 | 600 | 750 | 635 |
| 1998 | 320 | 475 | 540 | 736 | 1250 | 591 |
| 1999 | 400 | 495 | 550 | 651 | 720 | 594 |
| 2000 | 440 | 540 | 600 | 640 | 830 | 634 |
| 2001 | 400 | 580 | 644 | 758 | 920 | 665 |
| 2002 | 450 | 551 | 650 | 775 | 1005 | 661 |
| 2003 | 290 | 668 | 705 | 763 | 1008 | 705 |
| 1999 M | 400 | 495 | 540 | 587 | 720 |  |
| 1999 F | --- | --- | --- | --- | --- |  |
| 2000 M | 440 | 563 | 620 | 649 | 830 |  |
| 2000 F | 530 | 545 | 566 | 593 | 650 |  |
| 2001 M | 400 | 590 | 647 | 780 | 920 |  |
| 2001 F | 450 | 550 | 630 | 670 | 896 |  |
| 2002 M | 450 | 551 | 642 | 725 | 1005 |  |
| 2002 F | 540 | 600 | 700 | 850 | 880 |  |
| Total (10 male/6 female) |  |  |  |  |  |  |
| 2003 M | 290 | 648 | 710 | 788 | 830 |  |
| 2003 F | 600 | 683 | 695 | 723 | 1008 |  |
| One year or less experience (9 male/5 female) |  |  |  |  |  |  |
| 2003 M | 290 | 630 | 710 | 750 | 830 |  |
| 2003 F | 600 | 680 | 690 | 700 | 730 |  |



19961997199819992000200120022003

Business and Industry
11-12-Month Salaries
(in hundreds of dollars)

| Ph.D. Year | Min | Q ${ }_{1}$ | Median | $\mathrm{Q}_{3}$ | Max | Reported Median in 2003 \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 96 | --- | 170 | --- | 235 | 653 |
| 1975 | 114 | --- | 187 | --- | 240 | 520 |
| 1980 | 190 | --- | 284 | --- | 400 | 555 |
| 1985 | 260 | 360 | 400 | 420 | 493 | 606 |
| 1990 | 320 | 438 | 495 | 533 | 700 | 641 |
| 1995 | 288 | 480 | 568 | 690 | 1250 | 652 |
| 1996 | 250 | 510 | 580 | 610 | 1000 | 653 |
| 1997 | 300 | 483 | 600 | 658 | 1000 | 665 |
| 1998 | 240 | 550 | 650 | 750 | 2250 | 712 |
| 1999 | 360 | 600 | 680 | 761 | 2450 | 734 |
| 2000 | 200 | 640 | 720 | 800 | 1500 | 761 |
| 2001 | 475 | 716 | 770 | 865 | 1850 | 795 |
| 2002 | 325 | 734 | 780 | 850 | 1400 | 793 |
| 2003 | 300 | 700 | 800 | 900 | 1250 | 800 |
| 1999 M | 360 | 626 | 700 | 763 | 2450 |  |
| 1999 F | 440 | 580 | 644 | 676 | 1100 |  |
| 2000 M | 200 | 640 | 730 | 800 | 1500 |  |
| 2000 F | 200 | 645 | 690 | 788 | 980 |  |
| 2001 M | 520 | 717 | 788 | 875 | 1700 |  |
| 2001 F | 475 | 710 | 750 | 850 | 1850 |  |
| 2002 M | 325 | 738 | 782 | 858 | 1100 |  |
| 2002 F | 600 | 713 | 768 | 838 | 1400 |  |
| Total (32 male/15 female) |  |  |  |  |  |  |
| 2003 M | 550 | 725 | 840 | 920 | 1250 |  |
| 2003 F | 300 | 628 | 780 | 816 | 900 |  |
| One year or less experience ( $24 \mathrm{male} / 11$ female) |  |  |  |  |  |  |
| 2003 M | 550 | 719 | 815 | 905 | 1250 |  |
| 2003 F | 300 | 610 | 702 | 805 | 880 |  |

(Note: Three salaries above \$150,000 are not shown.)


19961997199819992000200120022003

## Definitions of the Groups

As has been the case for a number of years, much of the data in these reports is presented for departments divided into groups according to several characteristics, the principal one being the highest degree offered in the mathematical sciences. Doctoral-granting departments of mathematics are further subdivided according to their ranking of "scholarly quality of program faculty" as reported in the 1995 publication Research-Doctorate Programs in the United States: Continuity and Change. ${ }^{1}$ These rankings update those reported in a previous study published in 1982.2 Consequently, the departments which now comprise Groups I, II, and III differ significantly from those used prior to the 1996 survey.

The subdivision of the Group I institutions into Group I Public and Group I Private was new for the 1996 survey. With the increase in number of the Group I departments from 39 to 48, the Data Committee judged that a further subdivision of public and private would provide more meaningful reporting of the data for these departments.

Brief descriptions of the groupings are as follows:
Group I is composed of 48 departments with scores in the 3.00-5.00 range. Group I Public and Group I Private are Group I departments at public institutions and private institutions respectively.
Group II is composed of 56 departments with scores in the 2.00-2.99 range.

Group III contains the remaining U.S. departments reporting a doctoral program, including a number of departments not included in the 1995 ranking of program faculty.
Group IV contains U.S. departments (or programs) of statistics, biostatistics, and biometrics reporting a doctoral program.
Group V contains U.S. departments (or programs) in applied mathematics/applied science, operations research, and management science which report a doctoral program.
Group Va is applied mathematics/applied science; Group Vb, which is no longer surveyed as of 1998-99, was operations research and management science.
Group M contains U.S. departments granting a master's degree as the highest graduate degree.
Group B contains U.S. departments granting a baccalaureate degree only.
Listings of the actual departments which comprise these groups are available on the AMS Website at www. ams.org/outreach.
${ }^{1}$ Research-Doctorate Programs in the United States: Continuity and Change, edited by Marvin L. Goldberger, Brendan A. Maher, and Pamela Ebert Flattau, National Academy Press, Washington, DC, 1995.
${ }^{2}$ These findings were published in An Assessment of ResearchDoctorate Programs in the United States: Mathematical and Physical Sciences, edited by Lyle V. Jones, Gardner Lindzey, and Porter E. Coggeshall, National Academy Press, Washington, DC, 1982. The information on mathematics, statistics, and computer science was presented in digest form in the April 1983 issue of the Notices, pages 257-67, and an analysis of the classifications was given in the June 1983 Notices, pages 392-3.

Graphs. The graphs show standard boxplots summarizing salary distribution information for the years 1996 through 2003. Values plotted for 1996 through 2002 are converted to 2003 dollars using the implicit price deflator prepared annually by the Bureau of Economic Analysis, U.S. Department of Commerce.

For each boxplot the box shows the first quartile (Q1), the median (M), and the third quartile (Q3). The interquartile range (IQR) is defined as Q3-Q1. Think of constructing invisible fences 1.5 xIQR below Q1 and $1.5 \times \mathrm{IQR}$ above Q3. Whiskers are drawn from Q3 to the largest observation that falls below the upper invisible fence and from Q1 to the smallest observation that falls above the lower invisible fence. Think of constructing two more invisible fences, each falling $1.5 x$ xQR above or below the existing invisible fences. Any observation that falls between the fences on each end of the boxplots is called an outlier and is plotted as o in the boxplots. Any observation that falls outside of both fences either above or below the box in the boxplot is called an extreme outlier and is marked as * in the boxplot.

## Acknowledgments

The Annual Survey attempts to provide an accurate appraisal and analysis of various aspects of the academic mathematical sciences scene for the use and benefit of the community and for filling the information needs of the professional organizations. Every year, college and university departments in the United States are invited to respond. The Annual Survey relies heavily on the conscientious efforts of the dedicated staff members of these departments for the quality of its information. On behalf of the Annual Survey Data Committee and the Annual Survey Staff, we thank the many secretarial and administrative staff members in the mathematical sciences departments for their cooperation and assistance in responding to the survey questionnaires.

## Other Data Sources

American Association of University Professors, Don't Blame the Faculty for High Tuition: The Annual Report on the Economic Status of the Profession 2003-2004, Academe: Bull. AAUP (March/April 2004), Washington, DC.
American Statistical Association, 2003-2004 Salary Report of Academic Statisticians, AmStat News (December 2003), Alexandria, VA.

Commission on Professionals in Science and Technology, Professional Women and Minorities, 14th ed., CPST, Washington, DC, 2002.
, Salaries of Scientists, Engineers, and Technicians: A Summary of Salary Surveys, 20th ed., CPST, Washington, DC, 2003.
Conference Board of the Mathematical Sciences, Statistical Abstract of Undergraduate Programs in the Mathematical

Sciences in the United States: Fall 2000 CBMS Survey, American Mathematical Society, 2002.
$\qquad$ , Statistical Abstract of Undergraduate Programs in the Mathematical Sciences in the United States: Fall 1995 CBMS Survey, MAA Reports No. 2, 1997.
National Opinion Research Center, Doctorate Recipients from United States Universities: Summary Report 2001, Survey of Earned Doctorates, Chicago, IL, 2002.
National Research Council, Strengthening the Linkages between the Sciences and the Mathematical Sciences, National Academy Press, Washington, DC, 2000.
___ U.S. Research Institutes in the Mathematical Sciences: Assessment and Perspectives, National Academy Press, Washington, DC, 1999.
, Research-Doctorate Programs in the United States: Continuity and Change, National Academy Press, Washington, DC, 1995.
National Science Board, Science and Engineering Indica-tors-2004. Two Volumes (volume 1, NSB 04-01; volume 2, NSB 04-1A), National Science Foundation, Arlington, VA, 2004.
National Science Foundation, Characteristics of Doctoral Scientists and Engineers in the United States: 2001 (NSF 03-310), Detailed Statistical Tables, Arlington, VA, 2003. , Graduate Students and Postdoctorates in Science and Engineering: Fall 2001 (NSF 03-320), Arlington, VA, 2003.
___, Science and Engineering Degrees: 1966-2001 (NSF 04-311), Detailed Statistical Tables, Arlington, VA, 2004. , Science and Engineering Degrees, by Race/Ethnicity of Recipients: 1992-2001 (NSF 04-318), Detailed Statistical Tables, Arlington, VA, 2004.
, Science and Engineering Doctorate Awards: 2002 (NSF 04-303), Detailed Statistical Tables, Arlington, VA, 2003.
, Statistical Profiles of Foreign Doctoral Recipients in Science and Engineering: Plans to Stay in the United States (NSF 99-304), Arlington, VA, 1998.
, Women, Minorities, and Persons with Disabilities in Science and Engineering: 2002 (NSF 03-312), Arlington, VA, 2003.

## Doctoral Degrees Conferred 2002-2003

## Supplementary List

The following list supplements the list of thesis titles published in the February 2004 Notices, pages 246-263.

## CALIFORNIA

## University of California, Davis

## Mathematics

Scott, Michael, General relativistic shock-waves propagating at the speed of light.

## NEW JERSEY

## Princeton University

## Mathematics

Askshay, Venkatesh, Limiting forms of the trace formula. Banner, Adrian, Restriction of the Fourier transforms to quadratic submanifolds.
Booker, Andrew, Numerical tests of modularity.
Chudnovsky, Maria, Berge trigraphs and their applications.
Doran, Brent, Intersection homology hypergeometric functions, and moduli spaces as ball quotients.
Hall, Christopher, $L$-functions of twisted legendre curves. Harcos, Gergely, New bounds for automorphic $L$-functions. Helfgott, Harald, Root numbers and the parity problem. Kerr, Matthew, Geometric construction of regular currents with applications to algebraic cycles.
Krieger, Joachim, Global regularity of wave maps in 2 and 3 spatial dimensions.
McKee, Mark, On the finite order of Whittaker functions, Eisenstein series, and automorphic $L$-functions.
Milley, Peter, Tube volumes and small hyperbolic 3-manifolds.
Parson, James, Level-raising congruences in the representation theory of reductive groups over large fields.
Sepanski, Peter, A Seiberg-Witten product formula for certain circle-bundles over surfaces.
Spinu, Florin, The $L^{4}$ norms of the Eisenstein series.
Tymoczko, Julianna, Decomposing Hessenberg varieties over classical groups.

## OHIO

## Case Western Reserve University (2)

Statistics
Subramanian, Neepa, Monte Carlo methods for large queing networks.
Yan, Guofen, Evaluation of Bayesian diagnostic methods for hierarchial data.

## OREGON

## Portland State University (1)

## Mathematics

Rosson, John, Multiplicative invariants of special 2-complexes.


[^0]:    Ellen E. Kirkman is professor of mathematics, Wake Forest University. James W. Maxwell is AMS associate executive director for Membership and Programs. Colleen A. Rose is AMS survey analyst.

