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Introduction to the Current Events Bulletin 
 
Will the Riemann Hypothesis be proved this week?  What is the  Geometric 
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Assembling surfaces from random pants:
mixing, matching and correcting in the proofs

of the surface-subgroup and Ehrenpreis
conjectures

Jeffrey F. Brock ∗

December 7, 2011

1 Introduction
In his revolutionary work on 3-manifolds, William Thurston saw that many topo-
logical questions might be fruitfully pursued with geometric methods. The tools
he developed frequently harness hyperbolic geometry to develop sufficient struc-
ture to arrive at a topological or algebraic conclusion.

The reader may take as a simple example an element in the fundamental
group of a manifold is homotopy class containing an uncountable collection of
closed loops, in a manifold with a constant negative curvature metric we can find
a unique geodesic representative of each homotopy class. More refined structure
emerges from dynamical considerations, such as the statistics of the geodesic flow
φt : T 1M→ T 1M on the unit tangent bundle of manifold of constant negative cur-
vature.

In the recent work of Jeremy Kahn and Vladimir Markovic [KM1], a beauti-
ful example emerges of the power of Thurston’s perspective in the answer to the
following conjecture of Waldhausen:

Theorem 1.1 (Kahn-Markovic). THE SURFACE SUBGROUP THEOREM — Let M
be a closed irreducible 3-manifold. Then π1(M) contains a subgroup Γ isomor-
phic to π1(S) for a closed surface S.
∗Research partially supported by the NSF.
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On its face a purely algebraic statement, the Theorem in this generality re-
lies on Perelman’s resolution of the geometrization conjecture to ensure that each
such 3-manifold admits a geometric decomposition and uses the geometry and
dynamics of geodesics in hyperbolic 3-manifolds to arrive at a construction of an
immersed, π1-injective surface in the manifold. (In 3-manifolds with the other,
non-hyperbolic geometries the existence had been established previously).

Remarkably, the three-dimensional perspective motivates a construction that
well adapted to questions in purely two-dimensional geometry. Specifically, Leon
Ehrenpreis asked whether given two hyperbolic Riemann surfaces one can find
finite covers that are nearly isometric. (Though he phrased his question in the
language of quasi-conformal mappings, the geometric formulation is equivalent).
Using a two-dimensional version of the construction of Theorem 1.1, Kahn and
Markovic have answered in the affirmative this long-standing Ehrenpreis Conjec-
ture:

Theorem 1.2 (Kahn-Markovic). THE EHRENPREIS CONJECTURE — Let X and
Y be hyperbolic Riemann surfaces. Then for each ε > 0 there are finite covers X̂
and Ŷ of X and Y and a (1+ ε)-bi-Lipschitz diffeomorphism f : X̂ → Ŷ .

The proof recently appeared in the preprint [KM2]. What could the proofs
of these two apparently disparate statements have in common? Each relies on
a construction of a specific hyperbolic Riemann surface made up from “pairs of
pants” of a specific geometric type, with boundary curves comprised of geodesics.
These pairs of pants are glued together along their geodesic boundary curves as
they sit either in the hyperbolic 3-manifold M, in the first case, or abstractly to
form the covering space X̂ in the second case. But in each a central technical
effort is required to show that the pairs of pants in the construction can be matched
along boundary curves without losing the geometric properties needed. To do this
matching, one employs the (exponential) mixing of the geodesic flow on the unit
tangent bundle of the hyperbolic 3-manifold M in the first case, and on the base
hyperbolic surface X in the second.1

In this article, we will try to illuminate some key insights required to make
the argument work. Though the details are beyond the scope of our treatment, the
basic outline of proof in each case can be made readily understandable.

Acknowledgement. The author is grateful to Jeremy Kahn for discussions and

1A preprint of Lewis Bowen [Bow] observed the connection between the surface subgroup
conjecture and the Ehrenpreis conjecture, proving weak forms of each in which the surface or
covering space has bounded injectivity radius but may not be closed.
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explanations of the proofs of Theorems 1.1 and 1.2. We borrow extensively from
lecture notes of Kahn in our discussion, terminology, and examples.

2 Immersions and Covers
The essential elements of the approach of Kahn and Markovic to Theorems 1.1
and 1.2 involves how to build up mappings, be they immersions into a higher
dimensional manifold or covering maps, from immersions of a standard piece.

As a test of the concept, let us first consider the case of 1-manifolds. Let C be
the circle of radius 1 and consider a family of isometric immersions of the interval
of length 2π/3 into C with endpoints at the cube roots of unity. By choosing
immersions whose endpoints match up at θ = 0, θ = 2π/3 and θ = 4π/3, we can
glue these immersions together to form a covering space of C. This first case is
perhaps deceptive, as the covering space can be made to have degree 1.

Consider, alternatively, isometric immersions of the interval of length 3π for
which the endpoints lie at θ = 0 and θ = π . Such immersions will not be injective,
but choosing (a pair) of immersions and gluing them along their endpoints, we can
form a degree-3 cover of the circle.

Finally, consider the set of all isometric immersions of the unit interval into
C. The problem now becomes more subtle, as there is no way to build a locally
isometric cover out of such intervals since the length of the circle is not a multiple
of an integer. If, however, we are willing to take a very large number of inter-
vals, we stretch our intervals slightly by allowing our maps to be almost isometric
immersions, we may build a locally almost isometric cover. As the number of in-
tervals we allow grows, we can construct a cover with covering map that is more
and more nearly isometric.

In general, it is a homological problem whether a given collection intervals
σi : I→C can be assembled into a cover: if

∑
i

niσi

represents a formal collection immersions of oriented intervals with multiplicity
ni ∈ Z, then provided we have

∑
i

ni∂σi = 0,

where ∂σi represents σi(1)−σi(0) as a 0-chain, the maps σi may be glued to-
gether to form a covering space.
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C

Figure 1. Building covers of the circle from intervals.

We may argue similarly to construct immersed 1-manifolds in a 2-manifold.
Given a graph G with geodesic edges in a hyperbolic surface X , it is not entirely
clear whether one can piece together the edges end-to-end to obtain an immersion
of a 1-manifold (it depends on the structure of the graph). If however, we are
willing to consider two copies of each edge, with opposite orientations, then the
endpoints may once again be paired to form a map of a (closed) 1-manifold into
X .

Figure 2. Constructing an immersed 1-manifold from a graph with geodesic
edges.

What about the question of how isometric this immersion may be? Surely
if there is a vertex in the graph that is a dead-end it is hopeless: the 1-manifold
resulting from the above construction will double back on itself. If, however, the
edges of G emanate from each vertex of G in an ε-dense and equidistributed set
of directions, we can pair up edges in such a way that the resulting path has very
small angle at each vertex. A piecewise geodesic in a hyperbolic surface that is
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Figure 3. A piecewise geodesic path in the hyperbolic plane with small angles is
close to a unique geodesic.

made up of segments of definite length meeting in very small angles lies very
close to a unique geodesic in the surface, and is homotopic to this geodesic by a
very short homotopy. In particular, if the geodesic is closed, the map is itself very
close to an isometric immersion and the immersion is homotopically non-trivial,
or π1-injective.

p
N1(p)

Figure 4. Equidistributed directions allow for nearly isometric immersions.

This circle of ideas motivates a similar discussion concerning constructions of
nearly-isometric covers of surfaces and nearly isometric immersions of surfaces
into 3-manifolds. Before working out the analogies we introduce some important
geometric notions in the hyperbolic geometry of surfaces.
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3 Hyperbolic Pairs of Pants
Any surface of negative Euler characteristic can be built out of “pairs of pants,”
namely, surfaces that are topologically the complement of three embedded open
disks in the sphere, glued together along their boundary curves, or “cuffs.”

A hyperbolic pair of pants is a compact surface with geodesic boundary that is
topologically a sphere with three open disks removed. Each pair of cuffs (bound-
ary components of pants) can be connected by a unique shortest orthogeodesic,
namely, a geodesic joining the cuffs that is orthogonal to each at its endpoints.

Figure 5. Different perspectives on pairs of pants and their orthogeodesics.

Cutting the hyperbolic pair of pants along the three orthogeodesics joining
the boundary components, we obtain a pair of right-angled hyperbolic hexagons,
namely, hexagons in the hyperbolic plane all of whose interior angles are π/2.
An elementary exercise in hyperbolic geometry shows that three side-lengths of a
right-angled hyperbolic hexagon determine its structure uniquely up to isometry.
Thus, doubling a right-angled hyperbolic hexagon along three alternating edges
produces a pair of pants whose structure is uniquely determined by the geodesic
lengths `1, `2 and `3 of the remaining sides of the hexagon. The resulting pair of
pants has boundary lengths 2`i, and we call `i the half-lengths of the pair of pants.

We may glue hyperbolic pairs of pants together to form a hyperbolic Rimeann
surface provided we make choose pants whose boundary lengths match up pair-
wise. The structure of the result appears at first only to depend on the lengths of
the pants curves, the curves involved in the gluing, but an additional parameter is
involved, coming from the displacement of the feet of the orthogeodesics that lie
on the given boundary curve. This “shear” parameter, together with the lengths of
the pants curves produce Fenchel-Nielsen coordinates for the Teichmüller space,
the parameter space of hyperbolic structures on a surface S up to isotopy. We will
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not need explicit use of these coordinates, but it is useful to keep in mind the fact
that the lengths and shears along the pants curves determine the structure on the
surface up to isometry.

d

Figure 6. A surface obtained by gluing hyperbolic pants.

4 Perfect Surfaces and Merely Good Surfaces
A central element of the construction of Kahn and Markovic is to find a “perfect”
model surface for their covering spaces. Given a (large) constant R, we consider
the (unique) hyperbolic pair of pants P all of whose boundary half-lengths are
exactly R. Then an R-perfect surface is obtained by gluing together copies of P so
that the displacement of the feet of the orthogeodesics is precisely unit distance to
the left (since the surface is oriented, displacement “to the left” makes sense from
either direction).

12R

Figure 7. Gluing good pants with a good shear.
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Kahn and Markovic show the following

Proposition 4.1. Any two closed perfect surfaces have a common finite cover.

The idea of proof is somewhat the reverse: they show that an R-perfect surface
admits a branched cover to a universal R-perfect orbifold OR, obtained by taking
the quotient of an R-perfect surface by a maximal set of symmetries. Then one
can find a common finite cover by intersecting the images of their fundamental
groups in the orbifold fundamental group of OR.

The transition from perfect surfaces to those that are merely good involves
relaxing the conditions on half-lengths to allow an ε error, where ε > 0 and for
the gluing displacement to differ from 1 by ε/R. More precisely, while a perfect
surface admits a pants decomposition P so that each curve γ ∈ P has half-length
hl(γ) =R and pants determined by P are glued with displacement s(γ) = 1, a good
surface has

|hl(γ)−R|< ε and |s(γ)−1|< ε/R

for each γ ∈ P.

Theorem 4.2. For all ε < ε0, and R > R0, any (ε,R)-good surface is 1012ε-close
to an R-perfect surface in the Teichmüller metric.

The Teichmüller metric is defined in terms of quasiconformal distortion of
minimal distortion quasiconformal maps in a given isotopy class. For the purposes
of our discussion here, let us say that the surfaces are nearly isometric by an
diffeomorphism that sends corresponding pants curves to pants curves and sends
feet nearby to corresponding feet.

Provided, then, that we can find a good cover X̂ of an arbitrary hyperbolic
Riemann surface X , this cover is close to a perfect surface X̂ ′. If Y is another
hyperbolic surface and Ŷ is its good cover, the nearby perfect surface Ŷ ′ has a
finite cover in common with the perfect surface X̂ ′. Since the distance in the
Teichmüller metric is invariant under passing to covers, it follows that X and Y
have finite covers that are close to the common perfect cover of X̂ ′ and Ŷ ′. This
proves the Ehrenpreis conjecture modulo the task of finding a good cover of an
arbitrary hyperbolic Riemann surface.

5 Good Covers
Though we have up to now considered surfaces built from pairs of pants by glu-
ing along boundary components, a pair of pants decomposition of a finite cover
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of a Riemann surface X will not in general descend to a pants decomposition
of the base except in very symmetric situations. The covering map will restrict
to an immersion on each pair of pants, and the boundary curves will project to
closed geodesics that need not be simple: their projections may have many self-
intersections. But given an isometric immersion of a pair of pants, how can we
see that it came from a cover of X?

The challenge of constructing a good cover can be reformulated into a chal-
lenge of matching up isometric immersions of good pants, pants whose half lengths
are within ε of R, in such a way that they match along a closed geodesic in X with
a shear within ε/R of 1.

In other words, given two good pants P1 and P2 immersed isometrically into
X and a closed geodesic γ in X so that γ1 ⊂ ∂P1 and γ2 ⊂ ∂P2 and γ1 and γ2 each
map isometrically to γ , the only obstruction to gluing these immersions along γ1
and γ2 is that the immersions must send P1 and P2 to the opposite side of γ .

Much like the situation in figure 1, given a finite collection of isometrically
immersed pants in X , we may glue these pants into a finite cover of X provided
only that for each closed geodesic γ in X , the number of pants mapping a boundary
curve to γ that lie to one side of γ is the same as the number mapping a boundary
curve to γ that lie to the other side.

But if we are in search of good covers, we would like the geodesics in this
consideration to be of length close to R, and we would like additional shearing
constraints on the gluings along such curves. To this end, we consider the sets
G (X) of all closed geodesics in X and P(X) of all isometrically immersed hyper-
bolic pairs of pants. Then we may attempt to build good covers out of good pants:
let

Γε,R = {γ | γ ∈ G (X), |hl(γ)−R|< ε}

and
Πε,R = {P | P ∈P(X), and ∂P⊂ Γε,R}

the (ε,R)-good pants in X . To glue (ε,R)-good pants into an (ε,R)-good cover,
we consider the feet of the orthogeodesics in P on each boundary curve of P. As
these feet divide the cuff into two geodesic segments of equal length, we may
think of the position of the feet as determining a single point in the unit normal
bundle of the “square root” of the geodesic γ in X , denoted N1(

√
γ), by a slight

abuse of notation.
Applying the exponential mixing of the geodesic flow on X , Kahn and Markovic

establish the following equidistribution theorem, which is a central technical tool
in the construction.
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Theorem 5.1 (Kahn-Markovic). EQUIDISTRIBUTION THEOREM 1 — For every
good curve γ , the set of feet feetγ(P) of for P ∈ Πε,R and γ ⊂ ∂P is evenly dis-
tributed in N1(

√
γ) to the scale e−qR for q depending only on the topology of X

and the choice of ε .

Here we say the set of feet are evenly distributed to the scale ε if for any
two ε-intervals on the unit normal bundle the ratio of the number of feet in these
intervals lies in the interval (1− ε,1+ ε).

All that is lacking to piece together the pants in Πε,R into a good cover is to
know that there are an equal number of pants on either side of each geodesic γ ∈
Γε,R. Indeed the equidistribution guarantees that the sets of feet that correspond to
pants on each side of γ are almost the same, but an imbalance could in principle
propogate through the whole construction. Unfortunately, the “doubling trick”
of figure 2 does not directly work here, since doubling each pair of pants will
just double whatever imbalance may exist across the normal bundle. This has
ultimately to do with the fact that the normal bundle is disconnected; the key to
making the doubling trick work previously was the connecteness of the normal
bundle for codimension-2 submanifolds.

This suggests returning to the setting of 3-manifolds to reassess what the fore-
going notions may imply.

6 Nearly Geodesic Immersed Surfaces in 3-Manifolds
As the normal bundle of a closed geodesic in a hyperbolic 3-manifold is con-
nected, we may attempt to use the doubling trick of figure 2 to produce a nearly
totally geodesic immersed surface in a hyperbolic 3-manifold. Recall we argued
that a nearly geodesically immersed closed loop in a hyperbolic surface is homo-
topically essential – given a nearly geodesic immersion of a hyperbolic surface X
into a hyperbolic 3-manifold, each element of the fundamental group of X is itself
nearly geodesically immersed in M. As in the 2-dimensional case, a piecewise
geodesic path made up of segments of definite length and with small angle is once
again near a unique geodesic. It follows that such a surface immerses in M in a
π1-injective manner.

But what of the equidistribution theorem? The normal bundle to a closed
geodesic γ in M is a torus, but we can give this torus an explicit representation in
terms of the geodesic γ: γ is the quotient of the axis of an element ϕγ ∈ PSL2(C),
in the isometries of hyperbolic 3-space H3, acting loxodromically. Indeed, the
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element ϕγ is conjugate in PSL2(C) to an element of the form z 7→ eλ (γ)z where
λ (γ) = `(γ)+ iθ(γ) is the complex length of γ . The torus C∗/〈ϕγ〉 represents the
unit-normal bundle of the geodesic γ .

A skew pair of pants in M is an immersion of a hyperbolic pair of pants P
into M that sends geodesic boundary components to closed geodesics representa-
tives in M, and sends orthogeodesics to geodesics orthogonal to the images of the
boundary components. These orthogeodesics then determine points in the unit-
normal bundle to γ , the corresponding boundary curve.

Theorem 6.1 (Kahn-Markovic). EQUIDISTRIBUTION THEOREM 2 — The feet

{feetγ(P) | γ ∈ ∂P,P ∈Πε,R}

are e−qR-evenly distributed as points on N1(
√

γ).

The equidistribution theorem guarantees that if we consider the set

Aγ = {feetγ(P) | γ ∈ ∂P,P ∈Πε,R}

we can find a permutation σ : Aγ → Aγ that moves every point by a translation
exactly iπ +1 up to error ε/R. In other words, the feet that correspond under the
permutation σ are nearly opposed and are offset by nearly 1 along the geodesic γ .
By doubling to obtain two copies A+

γ and A−γ of Aγ , the permutation and its inverse
give a perfect matching of the union A+

γ tA−γ with itself. Because the feet are
matched in such a way that the “incoming” skew pants and the “outgoing” skew
pants are nearly opposed in the normal bundle and sheared by 1 (using Hall’s
Marriage Theorem) a geodesic traversing the assembled pants will cross pants
curves with small bending and do so in at worst segments of definite length – the
shearing condition ensures that the pants curves do not “pile up.” The result is a
nearly Fuchsian, quasi-Fuchsian subgroup of the Kleinian group Γ uniformizing
M.

In particular, Kahn and Markovic prove the following:

Theorem 6.2 (Kahn-Markovic). GOOD SURFACE ALMOST FUCHSIAN — There
exist R0, K0, and ε0 > 0 so that if ρ : π1(S)→ PSL2(C) is a representation induced
from the inclusion of an (R,ε)-good panted surface with R > R0 and ε < ε0, we
may find an R-perfect hyperbolic surface H/Γ, with Γ < PSL2(R) < PSL2(C),
and an equivariant mapping h : H3→ H3 that extends to a K0ε-quasiconformal
map on ∂∞H3 = Ĉ.

In particular, ρ is a faithful, discrete, quasi-Fuchsian representation.
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Figure 8. The universal cover of a quasi-Fuchsian surface obtained from gluing
totally geodesic pairs of pants along their boundary components.

Figure 9. An almost Fuchsian Quasi-Fuchsian limit set.
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The mapping h sends the circle R∪∞ to a quasi-circle in Ĉ, the limit set of
the quasi-Fuchsian image group (see figure 9).

This suffices to verify Waldhausen’s surface subgroup conjecture in the hy-
perbolic case, which was the remaining case that was unknown, after Perelman’s
proof of the geometrization conjecture. We will say more about implications
of Theorem 1.1 after we briefly sketch the necessary modifications to the argu-
ment that address the problem presented by the disconnected normal bundle in
the Ehrenpreis case.

7 Self-Correction and the Ehrenpreis Conjecture
As noted above in the case of the circle, when we are gluing 1-manifolds to form a
cover of the circle, a homological condition should be satisfied: the formal sum of
these 1-manifolds should be a cycle in homology, guaranteeing that their boundary
points cancel in pairs.

While the case of connected normal bundle outlined above allows for a dou-
bling argument, gluing pants in a surface along a geodesic presents the possibil-
ity of an imbalance among all the good pants that contain a given curve in their
boundary. Equidistribution, however, guarantees that the pants that lie to each
side are almost balanced, and we find that removing some of these pants from
the collection gives a balanced collection that is still sufficiently equidistributed
to produce an (ε,R)-good surface.

To proceed formally, Kahn and Markovic introduce a homology theory of
good pants to show the desired “closing up” can be carried out with a good sur-
face. We will omit this level of detail but we describe the following additional
structure: let Γε,R be the oriented closed geodesics on X of length within ε of R,
the so-called good curves. Then if ZΓε,R is the formal sums of elements in Γε,R,
we may take the obvious boundary map

∂ : Πε,R→ ZΓε,R

from the collection of good pants to the formal sums of good curves.
Kahn and Markovic argue that when R is large, depending on the topology of

X and on ε , there is a correction function

q : QΓε,R→QΠε,R

satisfying
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1. ∂q(∂P) = ∂P if P ∈QΠε,R and

2. ‖q(α)‖∞ ≤ e−RP(R)‖α‖∞ for any α ∈QΓε,R, where P(R) is a polynomial
in R.

The second item reflects, in some sense, that most of the pants can be matched if
they are equidistributed. This is again a consequence of the exponential mixing of
the geodesic flow.

Then letting
π = ∑

P∈Πε,R

P

be the sum of the good pants, we can balance this collection by considering

π
′ = π−q(∂π).

We note that ∂π ′ = ∂π−∂q(∂π) = 0 by (1) so π ′ is a collection of pants that
is balanced. Furthermore, for large R q(∂π) is much smaller than π by (2) so π ′

is still very well distributed. It follows that the matching can take place in such a
manner that yields a (Kε,R)-surface, where K is a universal constant.

This is what was required to find the good cover of X needed to prove the
Ehrenpreis conjecture.

8 Epilogue
Though the proof of the Ehrenpreis conjecture represents a major breakthrough in
the study of Teichmüller theory, particularly the behavior of Teichmüller geometry
in the passage to covers, the work of Kahn and Markovic on π1-injective immersed
surfaces in hyperbolic 3-manifolds is part of a compelling larger story in the recent
history of 3-manifold topology.

While Perelman’s proof of the geometrization conjecture is a central part of
the proof of Theorem 1.1 as stated, the existence of a π1-injective surface in
a hyperbolic 3-manifold had been a central question popularized by the work
of Thurston. Thurston’s original hyperbolization theorem applied to Haken 3-
manifolds, namely, those 3-manifolds M that admit an embedded π1-injective sur-
face (see, e.g., [Th2], [Th3], [Ot], [Kap]).

Thurston asked as a kind of challenge problem whether a compact, orientable,
irreducible, atoroidal 3-manifold M with infinite fundamental group admits a finite
cover that fibers over the circle (he also remarked at the time that “this dubious
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sounding question seems to have a definite chance for a positive answer” [Th1]).
This would produce, via Thurston’s original theorem, a geometric structure for a
finite cover which would then descend to the original manifold. Such manifolds
are now known to be hyperbolic by Perelman.

But efforts toward the conjecture have generally taken the geometric structure
as a hypothesis. The proof of Kahn-Markovic of Theorem 1.1 is a key ingredient,
in that the existence of an injective surface subgroup is a necessary condition
for either conjecture. Much work is underway to “separate” the Kahn-Markovic
surface – were one to be able to pass to a finite cover of M that eliminated self
intersections of the Kahn-Markovic surface one would have a proof of the virtually
Haken conjecture (recent results of Agol together with announced work of Wise
imply that this suffices to prove the virtually fibered conjecture as well [Ag]).

Even without this “virtually fibered conjecture” the Kahn-Markovic Surface
Subgroup Theorem provides the possibility of deeper insight into the nature of
the geometric structure on a closed 3-manifold M. Indeed, the Geometrization
Theorem tells one very little about a hyperbolic structure on M other than that it
is indeed hyperbolic.

The Kahn-Markovic Surface Subgroup Theorem represents an compelling in-
stance of an strain in research begun by Thurston in 3-manifold topology directed
at the following question:

Question 8.1. How does the topology of a hyperbolic 3-manifold determine its
geometry?

The beautiful role of dynamics in the proof of Theorem 1.1 suggests a new
tool for approaching Question 8.1 and other questions in the study of hyperbolic
3-manifolds. The techniques of Kahn and Markovic are as compelling as their
results, and this body of work will undoubtedly inspire many more threads of
inquiry than it ties off.
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[Ot] J. P. Otal. Le théorème d’hyperbolisation pour les variétés fibrées de
dimension trois. Astérisque, 1996.
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THE COBORDISM HYPOTHESIS

DANIEL S. FREED

Abstract. In this expository paper we introduce extended topological
quantum field theories and the cobordism hypothesis.

1. Introduction

The cobordism hypothesis was conjectured by Baez-Dolan [BD] in the mid

1990s. It has now been proved by Hopkins-Lurie in dimension two and by

Lurie in higher dimensions. There are many complicated foundational issues

which lie behind the definitions and the proof, and only a detailed sketch [L1]

has appeared so far.1 The history of the Baez-Dolan conjecture goes most

directly through quantum field theory and its adaptation to low-dimensional

topology. Yet in retrospect it is a theorem about the structure of manifolds

in all dimensions, and at the core of the proof lies Morse theory. Hence

there are two routes to the cobordism hypothesis: algebraic topology and

quantum field theory.

Consider the abelian group ΩSO
0 generated by compact oriented 0-dimen-

sional manifolds, that is, finite sets Y of points each labeled with + or −.

The group operation is disjoint union. We deem Y0 equivalent to Y1 if there

is a finite union X of compact oriented 1-manifolds with oriented boundary

Y1�−Y0. Then a basic theorem in differential topology [Mi1, Appendix] as-

serts that ΩSO
0 is the free abelian group with a single generator, the positively

oriented point pt+.
2 This result is the cornerstone of smooth intersection

theory. From the point of view of algebraic topology the cobordism hypoth-

esis is a similar statement about a more ornate structure built from smooth

Received by the editors November 15, 2011.
The work of D.S.F. is supported by the National Science Foundation under grant DMS-

0603964.
1Nonetheless, we use ‘theorem’ and its synonyms in this manuscript.
2Two important remarks: (1) we can replace orientations with framings; (2) for unori-

ented manifolds the group ΩO
0 is not free on one generator, but rather there is a relation

and ΩO
0
∼= Z/2Z.

1
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manifolds. The simplest version is for framed manifolds. The language is

off-putting if unfamiliar, and it will be explained in due course.

Theorem 1.1 (Cobordism hypothesis: heuristic algebro-topological ver-

sion). For n ≥ 1, Bordfrn is the free symmetric monoidal (∞, n)-category

with duals generated by pt+.

The ‘Bord’ in Bordfrn stands for ‘bordism’,3 and pt+ is now the point with

the standard framing. Bordfrn is an elaborate algebraic gadget which encodes

n-framed manifolds with corners of dimensions ≤ n and tracks gluings and

disjoint unions. One of our goals is to motivate this elaborate algebraic

structure.

An extended topological field theory is a representation of the bordism

category, i.e., a homomorphism F : Bordfrn → C. The codomain C is a sym-

metric monoidal (∞, n)-category, typically linear in nature. In important

examples F assigns a complex number to every closed n-manifold and a

complex vector space to every closed (n− 1)-manifold.

Theorem 1.2 (Cobordism hypothesis: weak quantum field theory version).

A homomorphism F : Bordfrn → C is determined by F (pt+).

The object F (pt+) ∈ C satisfies stringent finiteness conditions expressed in

terms of dualities, and the real power of the cobordism hypothesis is an

existence statement: if x ∈ C is n-dualizable, then there exists a topological

field theory F with F (pt+) = x.

Our plan is to build up gradually to the categorical complexities inherent

in extended field theories and the cobordism hypothesis. So in the next two

sections we take strolls along the two routes to the cobordism hypothesis:

algebraic topology (§2) and quantum field theory (§3). Section 4 is an ex-

tended introduction to non-extended topological field theory. The simple

examples discussed there only hint at the power of this circle of ideas. In §5
we turn to extended field theories and so also to higher categories. The

cobordism hypothesis is the subject of §6, where we state a complete ver-

sion in Theorem 6.8. The cobordism hypothesis connects in exciting ways

to other parts of topology, geometry, and representation theory as well as

to some contemporary ideas in quantum field theory. A few of these are

highlighted in §7.
The manuscript [L1] has leisurely introductions to higher categorical ideas

and to the setting of the cobordism hypothesis, in addition to a detailed

3‘Bordism’ replaces the older ‘cobordism’, as bordism is part of homology whereas
cobordism is part of cohomology [A1].
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sketch of the proof and applications. The original paper [BD] is another

excellent source of expository material. We have endeavored to complement

these expositions rather than duplicate them. I warmly thank David Ben-

Zvi, Andrew Blumberg, and Tim Perutz for their comments and suggestions.

2. Algebraic topology

The most basic maneuvers in algebraic topology extract algebra from

spaces. For example, to a topological space X we associate a sequence of

abelian groups Hq(X). There are several constructions of these homology

groups, but for nice spaces they are all equivalent [Sp]. The homology con-

struction begins to have teeth only when we tell how homology varies withX.

One elementary assertion is that if X � Y are homeomorphic spaces, then

the homology groups are isomorphic. Thus numerical invariants of homol-

ogy groups, such as the rank, are homeomorphism invariants of topological

spaces: Betti numbers. But it is much more powerful to remember the iso-

morphisms of homology groups associated to homeomorphisms, and indeed

the homomorphisms associated to arbitrary continuous maps. This is nat-

urally encoded in the algebraic structure of a category. Here is an informal

definition; see standard texts (e.g. [Mc]) for details.

Definition 2.1. A category C consists of a set4 C0 of objects {x}, a set C1 of

morphisms {f : x → y}, identity elements {idx : x → x}, and an associative

composition law f, g 	−→ g ◦ f for morphisms x
f−→ y and y

g−→ z. If C,D are

categories then a homomorphism5 F : C → D is a pair (F0, F1) of maps of

sets Fi : Ci → Di which preserve identity maps and compositions.

More formally, there are source and target maps C1 → C0, identity elements

are defined by a map C0 → C1, and composition is a map from a subset of

C1×C1 to C1—the subset consists of pairs of morphisms for which the target

of the first equals the source of the second. Topological spaces comprise the

objects of a category Top whose morphisms are continuous maps; abelian

groups comprise the objects of a category Ab whose morphisms are group

homomorphisms. Some basic properties of homology groups are summarized

4We do not worry about technicalities of set theory in this expository paper.
5The word ‘functor’ is usually employed here, but ’homomorphism’ is more consistent

with standard usage elsewhere in algebra.
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by the statement that

(2.2) Hq : (Top,�) −→ (Ab,⊕)

is a homomorphism. We explain the ‘�’ and ‘⊕’ in the next paragraph.

The homomorphism property does not nearly characterize homology, and

we can encode many more properties via extra structure on Top and Ab.

We single out one here, an additional operation on objects and morphisms.

If X1, X2 are topological spaces there is a new space X1 �X2, the disjoint

union. The operation X1, X2 	→ X1 � X2 has properties analogous to a

commutative, associative composition law on a set. For example, the empty

set ∅ is an identity for disjoint union in the sense that ∅ �X is canonically

identified with X for all topological spaces X. Furthermore, if fi : Xi →
Yi, i = 1, 2 are continuous maps, there is an induced continuous map f1 �
f2 : X1 �X2 → Y1 � Y2 on the disjoint union. An operation on a category

with these properties is called a symmetric monoidal structure, in this case

on the category Top. Similarly, the category Ab of abelian groups has a

symmetric monoidal structure given by direct sum: A1, A2 → A1⊕A2. The

homology maps (2.2) are homomorphisms of symmetric monoidal categories:

there is a canonical identification of Hq(X1 �X2) with Hq(X1)⊕Hq(X2).

Remark 2.3. Homology is classical in that disjoint unions map to direct

sums. We will see that a characteristic property of quantum systems is

that disjoint unions map to tensor products. The passage from classical to

quantum is therefore a kind of exponentiation.

Our interest here is not all topological spaces, but rather smooth mani-

folds. Fix a positive integer n.

Definition 2.4. Let Y0, Y1 be smooth compact (n − 1)-dimensional mani-

folds without boundary. A bordism from Y0 to Y1 is a compact n-dimensional

manifold X with boundary, a decomposition ∂X = ∂X0 � ∂X1, and diffeo-

morphisms Yi → ∂Xi, i = 1, 2.

Figure 1 depicts an example which emphasizes that manifolds need not be

connected. The empty set ∅ is a manifold of any dimension. So a closed

n-manifold—that is, a compact manifold without boundary—is a bordism

from ∅n−1 to ∅n−1. Note also that the disjoint union of smooth manifolds is

a smooth manifold, and the disjoint union of bordisms is a bordism.

To turn bordism into algebra we observe that bordism defines an equiv-

alence relation: closed (n− 1)-manifolds Y0, Y1 are bordant if there exists a
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X

Y0
Y1

Figure 1. A bordism X : Y0 → Y1

bordism from Y0 to Y1. (Observe that to prove transitivity it is convenient to

modify Definition 2.4 so that boundary identifications are between the open

manifold (−ε, ε)×Yi and an open 2-sided collar neighborhood of ∂Xi: smooth

functions glue nicely on open sets.) Disjoint union defines an abelian group

structure on the set ΩO
n−1 of equivalence classes. For example, ΩO

0
∼= Z/2Z is

generated by a single point. Twice a point is the disjoint union of two points,

and as two points bound a closed interval, two points are bordant to the

empty 0-manifold. Life is more interesting when we consider manifolds with

extra topological structure. For example, there are bordism groups ΩSO
q of

oriented manifolds. An orientation on a 0-manifold consisting of a single

point is a choice of + or −. Then ΩSO
0

∼= Z by the map which sends a finite

set of oriented points to the number of positive points minus the number of

negative points. This is a foundational result in differential topology which

enables oriented counts in intersection theory [Mi1]. Another interesting

structure is a stable framing. It arises in the Pontrjagin-Thom construction.

Let f : Sq+N → SN be a smooth map. By Sard’s theorem there is a regular

value p ∈ SN , whence M := f−1(p) ⊂ Sq+N is a smooth q-dimensional sub-

manifold. Also, a basis of TpS
N pulls back under f to a global framing of the

normal bundle to M in SN . If we deform p to another regular value, then

the framed manifold M undergoes a bordism. The same is true if f deforms

to a smoothly homotopic map. The precise correspondence works in the

stable limit N → ∞: the stably framed bordism group Ωfr
q is isomorphic to

the stable homotopy group of the sphere lim
N→∞

πq+N (SN ). This is the most

basic link between bordism and homotopy theory.
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M

f

S
q+N

SN

p

Figure 2. The Pontrjagin-Thom construction

Bordism has a long history in algebraic topology. By 1950 it appears6

that Pontrjagin had defined abelian groups based on the notion of a bordism,

though it was Thom [T] who made the first systematic computations of bor-

dism groups using homotopy theory. There are many variations according

to the type of manifold: oriented, spin, framed, etc. Theory and compu-

tation of bordism groups were an important part of algebraic topology in

the 1950s and 1960s, and they found applications in other parts of topology

and geometry. For example, Hirzebruch’s 1954 proof of the Riemann-Roch

theorem was based on bordism computations, as was the first proof of the

Atiyah-Singer index theorem [Pa] in 1963.

The bordism group of d-dimensional manifolds arises when (d+1)-dimen-

sional bordisms are used to define an equivalence relation. Disjoint union

of d-manifolds gives the abelian group structure. One lesson from classi-

cal algebraic topology is that the passage from Betti numbers to homology

groups is very fruitful. The analog here is to track bordisms between closed

manifold, not merely to observe their existence—in our “categorified” world

we encode the bordism as a map. Segal [Se2] introduced a bordism category

of Riemann surfaces in his axiomatization of 2-dimensional conformal field

theory, which inspired Atiyah [A2] to axiomatize topological field theories

in any dimensions using bordism categories of smooth manifolds with no

continuous geometric structure (such as a metric or conformal structure).

Tillmann [Til1, Til2] observed that the classifying space of the bordism cat-

egory, which has the abelian group-like operation of disjoint union, is a spec-

trum in the sense of stable homotopy theory. Together with Madsen [MT]

they conjecturally identify the classifying spectrum of an enriched bordism

category—a step towards the ∞-categories we meet in §5—and show that

6According to [May, §6] a 1950 Russian paper of Pontrjagin contains bordism groups;
see [P] for a later account. Thom [T] also cites work of Rohlin relevant to computations of
bordism in low dimensions, but I do not know if Rohlin phrased them in terms of bordism
groups.
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their conjecture implies Mumford’s conjecture [Mu] about the rational coho-

mology of the mapping class group. The Madsen-Tillmann conjecture was

subsequently proved in [MW] and is now known as the Madsen-Weiss theo-

rem. The relation with the spectra Thom used to compute bordism groups

is elucidated in [GMTW, §3], where another proof is given.

For now we restrict to manifolds with boundary—no corners—and so

organize closed (n−1)-manifolds into a symmetric monoidal category which

refines the abelian group Ωn−1.

Definition 2.5. Bord〈n−1,n〉 is the symmetric monoidal category whose ob-

jects are compact (n − 1)-manifolds and in which a morphism X : Y0 → Y1

is a bordism from Y0 to Y1, up to diffeomorphism. The monoidal structure

is disjoint union.

So now a bordism is a map—a morphism in a category—and so it carries

an “arrow of time’, at least near the boundary so as to distinguish incom-

ing boundary components from outgoing boundary components. Compo-

sition (Figure 3) is defined by gluing bordisms. We identify diffeomorphic

time

X X

Y2

Y1
Y0

Figure 3. Composition of bordisms

bordisms—the diffeomorphism must commute with the boundary identifica-

tions—in order to obtain an associative composition law. The identity mor-

phism Y → Y is the cylinder [0, 1] × Y with obvious boundary identifi-

cations. There are variants BordSO〈n−1,n〉 and Bordfr〈n−1,n〉 for oriented and

framed manifolds, but with one important change: in Bordfr〈n−1,n〉 the mor-

phisms X carry framings of the tangent bundle (not stabilized) and the

objects Y carry framings of TY ⊕ (1), where ‘(1)’ here denotes the trivial

real line bundle of rank one.
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By analogy to the homology homomorphism (2.2) we are led to the fol-

lowing definition.

Definition 2.6 ([A2]). An n-dimensional topological field theory is a ho-

momorphism

(2.7) F : Bord〈n−1,n〉 −→ (Ab,⊗)

of symmetric monoidal categories.

As telegraphed in Remark 2.3 in a quantum field theory disjoint unions map

to tensor products, not direct sums. There are many variations on this defini-

tion. The domain can be a bordism category of smooth manifolds with extra

structure, or even of singular manifolds. The codomain may be replaced by

any symmetric monoidal category, algebraic or not. We introduce a more

drastic variant of Definition 2.6 in §5. A typical choice for the codomain

is (VectC,⊗), the category of complex vector spaces under tensor product.

A topological field theory with values in VectC is a linearization—a linear

representation—of manifolds.

We have been led naturally to Definition 2.6 by combining basic ideas in

homology and bordism. But this is hardly the historical path! For that we

turn in the next section to notions in quantum field theory. Before leaving

bordism, though, we pause to remind the reader of the connection with

Morse theory.

Intuitively, a Morse function refines the arrow of time to a particular

time function. Let X : Y0 → Y1 be an n-dimensional bordism. A function

f : X → R is compatible with the bordism structure if there exist t0 < t1
such that t0, t1 are regular values of f and Yi = f−1(ti). Furthermore,

f is a Morse function if it has finitely many isolated nondegenerate critical

points. The main theorems in Morse theory [Mi2] assert that slices f−1(t)

and f−1(t′) are diffeomorphic if there are no critical values between t and t′,

and at an isolated critical point there is a topology change which is described

by a standard surgery. For example, in Figure 4 the local slice evolves from

time

Figure 4. An elementary bordism
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the two parallel line segments at the bottom to the two curves at the top; the

saddle depicts the elementary bordism which connects the two local slices.

Figure 5 displays the standard example of a Morse function on the torus—

f

RI

Figure 5. A Morse function

the height function—and embeds the elementary bordism of Figure 4 into a

neighborhood of one of the critical points of index 1.

Remark 2.8. The local description of the topology change at a critical point

uses a manifold with corners, as in Figure 4. Manifolds with boundary and

no corners do not suffice. The additional locality afforded by admitting

corners—and eventually higher codimensional corners—is a crucial idea for

the cobordism hypothesis; see §5.

Morse functions exist, as a consequence of Sard’s theorem. This means

that any bordism can be decomposed as a composition of elementary bor-

disms, one for each critical point. Manipulations with Morse functions are

a key ingredient in Milnor’s presentation [Mi3] of Smale’s h-cobordism the-

orem [Sm]. The space of Morse functions on a fixed bordism has many

components: Morse functions in different components induce qualitatively

different decompositions into elementary bordisms. Cerf [C] relaxed the

Morse condition to construct a connected space of functions. This enables a

systematic study of transitions between decompositions. For example, Cerf

theory is the basis for Kirby calculus [K], which describes links in 3-manifolds

and 4-manifolds. As we shall see it is also a crucial tool for constructing

topological field theories.

An elementary illustrative example of a Cerf transition is the family of

functions

(2.9) ft(x) =
x3

3
− tx, x, t ∈ R.

For t > 0 this is a Morse function with nondegenerate critical points at x =

±
√
t. For t < 0 it is a Morse function with no critical points. At t = 0
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the function fails to be Morse: x = 0 is a degenerate critical point. So

as t increases from negative to positive two critical points are born on the

x-line, and they separate at birth. In the other direction, as t decreases

from positive to negative the two critical points collide and annihilate. This

simple “birth-death transition” is all that is needed to connect different

components of Morse functions.

3. Quantum field theory

For much of its history quantum field theory was tied to four spacetime

dimensions and a handful of physically realistic examples. As opposed to

quantum mechanics, where the underlying theory of Hilbert spaces and oper-

ator theory has been fully developed, the analytic underpinnings of quantum

field theory remain unsettled. Still, there has been a huge transformation

over the past three decades. Quantum field theorists now study a large set of

examples in a variety of dimensions, not all of which are meant to be physi-

cally relevant. A deeper engagement with mathematicians and mathematics

has led physicists to study models whose consequences are more relevant to

geometry than to accelerators. Topological and algebraic aspects of quan-

tum field theories have come to the fore. From another direction string

theory has illuminated the subject, and there are new ties to condensed

matter theory as well.

In this section we briefly sketch how Definition 2.6 of a topological quan-

tum field theory emerges from physics. Our exposition is purely formal,

extracting the structural elements which most directly lead to our goal.

Let’s begin with quantum mechanics, which is a 1-dimensional quantum

field theory. (The dimension of a theory refers to spacetime, and at least in

mainstream theories there is a single time dimension. Thus a 1-dimensional

theory only has time; space is treated externally.) The basic ingredients are

a complex separable Hilbert space H and for each time interval of length t

a unitary operator

(3.1) Ut = e−itH/�.

Here H is the self-adjoint Hamiltonian which describes the quantum system,

and � is Planck’s constant. The states of the system are vectors (really
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complex lines of vectors) in H, and the unitary operators (3.1) describe

the evolution of a state in time. Self-adjoint operators O on H act on the

system—they are the observables—and the physics is encoded in expectation

values

(3.2) 〈Ω, UtnOn · · ·Ut2O2Ut1O1Ut0Ω〉.

In this expression the state Ω evolves for time t0, is acted on by the op-

erator O1, then evolves for time t1, then is acted on by the operator O2,

etc. See Figure 6 for a pictorial representation. We recommend [Ma, Fa]

x x x
O1 O2 On

Ω Ωt0 t1 tn

Figure 6. Vacuum expectation value in quantum mechanics

for structural expositions of mechanics which elucidate the pairing of states

and observables.

It is convenient and powerful to analytically continue the time t from the

real line to the complex line, and we restrict to Im t < 0. Real times are now

at the boundary of allowed complex times. If the Hamiltonian H is non-

negative, and Im t < 0, then the evolution operator e−itH/� is a contracting

operator. Wick rotation to imaginary time is then the restriction to purely

imaginary t = τ/
√
−1, where the Euclidean time τ is strictly positive. We

associate the Euclidean contracting evolution Fτ = e−τH/� to an interval

of length τ , that is, to a compact, connected Riemannian 1-manifold with

boundary whose total length is τ . The evolution obeys a semigroup law

(3.3) Fτ2+τ1 = Fτ2 ◦ Fτ1 ,

as illustrated in Figure 7. This is already reminiscent of bordism. We

τ1 τ2

τ1 + τ2

Figure 7. Composition of 1-dimensional bordisms



12 D. S. FREED

can imagine a bordism category BordRiem
〈0,1〉 whose objects are compact ori-

ented 0-manifolds and whose morphisms are compact Riemannian oriented

1-manifolds with boundary. The semigroup law for the evolution evolution

of a quantum mechanical system is encoded in the statement that

(3.4) F : BordRiem
〈0,1〉 −→ Hilb

is a homomorphism to the category of Hilbert spaces and contracting linear

maps. Notice that F encodes more than evolution. For example, we demand

that F be a homomorphism of symmetric monoidal categories mapping dis-

joint unions to tensor products, which encodes the idea that the state space

of the union of quantum mechanical systems is a tensor product. Exotic

“evolutions” are now possible; see Figure 8. In a more careful axiomati-

zation [Se1] one takes the codomain to be a category of topological vector

spaces; then the Hilbert space structure emerges more organically from the

geometry, as do the operator insertions in (3.2).

τ

τ τ

Figure 8. Exotic evolutions in quantum mechanics

It is a small step now to pass from the formal description (3.4) of a

quantum mechanical system to the assertion that an n-dimensional quantum

field theory is a homomorphism

(3.5) F : BordRiem
〈n−1,n〉 −→ Hilb

from the bordism category of Riemannian n-dimensional bordisms (“Rie-

mannian spacetimes”) to the category of Hilbert spaces (better: topological

vector spaces). If X is such a bordism, and x ∈ X a point not on the

boundary, then the boundary sphere of the geodesic ball of sufficiently small

radius r maps under F to a vector space Hr, and the limit as r → 0 is a

vector space of operators associated to the point x. We can approximate

it by the vector space at some small finite radius r0. Remove an open ball
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X

Y0
Y1

x1

x2

x3

time

Figure 9. Operator insertions

of radius r0 about x. Choose the arrow of time so that the new bound-

ary component—the sphere of radius r0 about x—is incoming. For exam-

ple, the bordism in Figure 9 has incoming boundary Y0 union the spheres

about x1, x2, and x3 and outgoing boundary Y1. A field theory F deter-

mines vector spaces F (Y0), F (Y1) for the boundary components and then

vector spaces V1, V2, V3 associated to the points x1, x2, x3. The bordism X

goes over to a linear map

(3.6) F (X) : V1 ⊗ V2 ⊗ V3 −→ Hom
(
F (Y0), F (Y1)

)
.

This is the sense in which the vector spaces Vi attach a space of opera-

tors to xi, analogously to the operators which appear in (3.2) as illustrated

in Figure 6. In case Y0 = Y1 = ∅n−1, then F (X) is called a correlation

function between “operators” at the points xi. If in addition there are no

points xi, then F (X) is a complex number, the partition function of the

closed manifold X.

This geometric formulation of quantum field theory developed in the

1980s out of the interaction between mathematicians and physicists cen-

tered around 2-dimensional conformal field theory. Graeme Segal’s samiz-

dat manuscript The definition of conformal field theory, now published [Se2],

was widely distributed and very influential among both mathematicians and

physicists. Segal’s recent series of lectures [Se1] explores and expands on

these ideas in the context of general quantum field theories. More traditional

mathematical treatments of quantum field theory [SW], [H], [GJ] are set in

four-dimensional Minkowski spacetime and focus on analytic aspects. The

geometric formulation set the stage for the advent of topological field theo-

ries. In 1988 Witten [W1] introduced twistings of supersymmetric quantum
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field theories on Minkowski spacetime which allow them to be formulated on

arbitrary oriented Riemannian manifolds. Special correlation functions in

twisted theories are topological invariants. Witten’s first application was to

a supersymmetric gauge theory in four dimensions—a theory whose principal

field is a connection on a principal bundle—where he showed that Donald-

son’s polynomial invariants of 4-manifolds [D] are correlation functions in

that twisted supersymmetric gauge theory. Two-dimensional supersymmet-

ric σ-models—whose principal field is a map Σ → M from a 2-manifold

into a Riemannian target manifold—also admit topological twistings in case

there is enough supersymmetry (which constrains the target manifold to

be Kähler in the basic case). These 2-dimensional topological field theo-

ries [W2] have had profound consequences for algebraic geometry in the

form of Gromov-Witten invariants and mirror symmetry. By late 1988 Wit-

ten realized [W3] that the Jones polynomials of knots and links in S3 are

encoded in a 3-dimensional field theory—called Chern-Simons theory af-

ter the classical action functional of connections which defines it—and he

used it to introduce new invariants of 3-manifolds. This theory, as opposed

to the topologically twisted supersymmetric models, is topological at the

classical level and has an immediate connection to combinatorially accessi-

ble invariants. For many mathematicians it served as an accessible entrée

into quantum field theory. In early 1989 Atiyah [A2] introduced a set of

axioms for topological quantum field theory which essentially amount to

Definition 2.6.

4. Topological quantum field theory

1-dimensional theories

Let’s begin our exploration Definition 2.6 with a 1-dimensional topological

field theory of oriented manifolds. Recall that the domain of such a theory

is the bordism category BordSO〈0,1〉 in which an object is a compact oriented

0-manifold—a finite set of points each with a ‘+’ of ‘−’ attached—and a mor-

phism is an oriented 1-dimensional bordism. There are two basic objects, the

+ point and the − point, and any other object is a tensor product (disjoint

union) of these. Some basic morphisms are illustrated in Figure 10. The

arrow of time points to the right, whereas the orientation is notated by an

arrow on each component of the bordism. Notice that there is a correlation
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time

id id coev ev

+ +
+

+

_ _
_

_

Figure 10. Elementary oriented 1-dimensional bordisms

between the orientation, the arrow of time, and the boundary orientation.

The first two morphisms are identities. The third is called coevaluation and

the fourth evaluation. Notice that the second bordism is obtained from the

first by reversing the arrow of time, and the same holds for the third and

fourth bordisms. Time reversal is a duality operation. Thus the − point

is the dual of the + point and the evaluation is dual to the coevaluation.7

The coevaluation and evaluation are evolutions in 1-dimensional topological

field theory which go beyond the standard evolutions in quantum mechanics

(Figure 8). Also, in quantum mechanics the closed intervals are Riemann-

ian, so have a length τ , whereas in the topological theory all closed intervals

are diffeomorphic and lead to the identity evolution. Comparison with (3.1)

shows that the Hamiltonian vanishes in a topological field theory. There is

no local evolution: all of the non-identity behavior comes from topology.

Now suppose F is a 1-dimensional oriented topological field theory (2.7)

with values in complex vector spaces:

(4.1) F :
(
BordSO〈0,1〉,�

)
−→

(
VectC,⊗

)
.

The notation recalls that F is a homomorphism of symmetric monoidal cat-

egories, so maps disjoint unions to tensor products. The homomorphism F

assigns a vector space F (pt+) = V+ to the + point and a vector space

F (pt−) = V− to the − point. This determines the value of F on all compact

oriented 0-manifolds as they are disjoint unions of + and − points. Also,

since the empty 0-manifold ∅0 is the tensor unit for disjoint union, it maps

under the homomorphism F to the tensor unit for complex vector spaces un-

der tensor product, which is the complex line C. Next, consider F evaluated

on the bordisms in Figure 10. As F is a homomorphism it sends identities

7The latter statement is not true for all geometric structures. For example, if we use
2-framings—framings of the tangent bundle made 2-dimensional by adding on a trivial
bundle—then the adjoints of coevaluation differ from evaluation by a change of framing.
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to identities, so the first two bordisms map to idV+ and idV− , respectively.

The last two bordisms map under F to linear maps

(4.2)
V+

c : C −→ ⊗
V−

V−
e : ⊗ −→ C

V+

where we have written the tensor product vertically to match the figure.

The sense in which coevaluation and evaluation give rise to duality is illus-

time

+ +

+ +

+

+

_

++__

_ _

__ _

Figure 11. The S-diagrams

trated in Figure 11. The left figure is the composition of two 1-dimensional

bordisms, each with two components. The first maps a single + point to the

tensor product (disjoint union) of 3 points: +, −, +. The second maps these

3 points back to the + point. The composition is computed by gluing at

the 3 points in the middle. The result is diffeomorphic to the identity map

on the + point. Recall that morphisms in BordSO〈0,1〉 are 1-dimensional bor-

disms up to diffeomorphisms which preserve the boundary identifications.

Comparing the first composition in Figure 11 with the first bordism in Fig-

ure 10 we see that the composition is the identity. To see the relation to

duality we apply the homomorphism F . Now the homomorphism property

has two consequences: (1) F sends a disjoint union of bordisms to the tensor

product of the corresponding linear maps, and (2) F sends a composition

of bordisms to the corresponding composition of linear maps. Using these

rules we see that F sends the compositions in Figure 11 to compositions of

linear maps

(4.3)

V+

idV+−−−−−−−→
⊗

c

V+
⊗
V−
⊗
V+

e
⊗

idV+−−−−−−−→ V+

V−
idV−−−−−−−−→
⊗

c

V−
⊗
V+

⊗
V−

e
⊗

idV+−−−−−−−→ V−
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(Note that we have used the symmetry in the first diagram to exchange the

order of the tensor product in the maps c, e from (4.2).)

Lemma 4.4. If the compositions (4.3) are identity maps, then V+, V− are

finite dimensional vector spaces and e is a nondegenerate duality pairing.

Proof. Set c(1) =
N∑
i=1

vi+⊗vi− for some vi± ∈ V± and some positive integer N .

Then the first composition in (4.3) is the map ξ 	→
∑

e(vi−, ξ)v
i
+. Since this

is the identity map, it follows that {vi+}Ni=1 spans V+, whence V+ is finite

dimensional. The same argument with the second composition proves that

V− is finite dimensional. If ξ ∈ V+ satisfies e(v−, ξ) = 0 for all v− ∈ V−, then

ξ =
∑

e(vi−, ξ)v
i
+ = 0. The same argument with the second composition

in (4.3) proves that if η ∈ V− satisfies e(η, v+) = 0 for all v+ ∈ V+, then

η = 0. Hence e is a nondegenerate pairing. �

Remark 4.5. A similar argument for a field theory F :
(
BordSO〈0,1〉,�

)
−→(

Ab,⊗
)
with values in abelian groups proves that F (pt+) is finitely gener-

ated and free.

Lemma 4.4 illustrates an important finiteness principle in topological

field theories: the vector space attached to an (n − 1)-manifold in an n-

dimensional topological field theory with values in VectC is finite dimen-

sional. We derived this finiteness from duality: the + point and − point

are duals, and that duality is expressed by the existence of coevaluation and

evaluation maps. Notice that any vector space V has a dual space, defined

algebraically as the space of linear maps V → C, which comes with a canon-

ical evaluation map. However, the coevaluation map exists if and only if

V is finite dimensional.

This notion of finiteness generalizes to any symmetric monoidal category.

Definition 4.6. Let C be a symmetric monoidal category and x ∈ C. Then

duality data for x is a triple (x′, c, e) consisting of an object x′ ∈ C, a

coevaluation c : 1 → x ⊗ x′, and an evaluation e : x′ ⊗ x → 1 such that the

compositions

(4.7) x
c⊗idx−−−→ x⊗ x′ ⊗ x

idx ⊗e−−−−→ x x′
idx′ ⊗c−−−−→ x′ ⊗ x⊗ x′

e⊗idx′−−−−→ x′

are identity maps. We say x is dualizable if there exists duality data for x.

The argument in Lemma 4.4 with the S-diagrams in Figure 11 apply in an n-

dimensional field theory—take the Cartesian product of the S-diagrams with
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a fixed (n − 1)-manifold—which shows that objects in the image of a field

theory F are always dualizable. In the next section we define an extension

of the notion of a field theory and there is a corresponding extension of

dualizability, which we take up in §6.
At this point we can state and prove a very simple special case of the

cobordism hypothesis.

Theorem 4.8. Let V be a finite dimensional complex vector space. Then

there is a homomorphism F as in (4.1) such that F (pt+) = V .

Proof. If Y is an oriented compact 0-manifold set

(4.9) F (Y ) =
⊗

y∈Y :y=pt+

V ⊗
⊗

y∈Y :y=pt−

V ∗.

Referring to the third and fourth bordisms in Figure 10 define F (coev) as

the inverse duality pairing C → V ⊗ V ∗ and F (ev) as the duality pairing

V ∗ ⊗ V → C. A Morse function on a 1-dimensional bordism decomposes it

as a composition of the elementary bordisms coev and ev: a nondegenerate

critical point of a real-valued function on a 1-manifold is either a local max-

imum or a local minimum. The only Cerf move (Figure 12) cancels a local

maximum against a local minimum, and the proof that this does not change

the value of F is the statement that the S-diagrams in Figure 11 map to the

identity. �

Figure 12. Cerf move in dimension one

2-dimensional theories

Next, consider a 2-dimensional oriented topological field theory

(4.10) F :
(
BordSO〈1,2〉,�

)
−→

(
VectC,⊗

)
.

There is only one compact connected oriented 1-manifold up to diffeomor-

phism: a circle has orientation-reversing diffeomorphisms (reflection). Let
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m 1 τ

Figure 13. Some elementary oriented 2-dimensional bordisms

V = F (S1). Elementary 2-dimensional bordisms, as depicted in Figure 13,

give extra structure on V , namely linear maps

(4.11) m : V ⊗ V V

1: C V

τ : V C

The multiplication m gives V an algebra structure with respect to which

the image of 1 ∈ C under the linear map 1 is an identity element. The

linear map τ is a trace on V .8 Standard arguments with oriented surfaces

and their diffeomorphisms prove that m is associative and commutative

and that the trace is nondegenerate in the sense that the pairing v1, v2 	→
(τ◦m)(v1, v2) is a nondegenerate pairing on V . For example, the composition

of the bordisms labeled m and τ in Figure 13 is the product of the circle

with the bordism labeled ev in Figure 10; then the argument of Lemma 4.4

with the S-diagram proves that the pairing τ ◦ m is nondegenerate. Thus

an oriented 2-dimensional topological field theory determines a commutative

Frobenius algebra, a commutative algebra with a nondegenerate trace. The

converse is also true.

Theorem 4.12. Let V be a commutative Frobenius algebra. Then there is

a homomorphism

(4.13) F :
(
BordSO〈1,2〉,�

)
−→

(
VectC,⊗

)

with F (S1) = V .

This is one of the oldest theorems in the subject. In the physics literature the

statement dates at least to Dijkgraaf’s thesis [Di]. There are several proofs in

8Note that the bordism τ is the time-reversal of 1. There is also a time-reversal of m,
which may be expressed as a composition of the maps in (4.11) together with the inverse
of τ ◦m.
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the mathematics literature, for example in [Ab, Ko]. The appendix to [MS]

contains a proof of Theorem 4.12 as well as several important variations.

As in the proof of Theorem 4.8 we first extend F to all closed oriented 1-

manifolds via tensor products. The data (4.11) which defines the Frobenius

structure on V tells what to attach to elementary 2-dimensional bordisms

arising from critical points of a Morse function of index 1,0,2. It remains

to verify that different Morse functions lead to the same linear map. That

check, for which we refer to the reader to [MS], uses the basic properties of

a commutative Frobenius algebra.

These explicit arguments with Morse functions quickly become tedious.

The situation simplifies for extended field theories (§5) which are more local.

They are the province of the cobordism hypothesis. The cobordism hypoth-

esis is proved using on the one hand more powerful results about space of

Morse functions and on the other more sophisticated algebra to organize the

argument.

One source of examples of commutative Frobenius algebras is the coho-

mology algebra H•(M ;C) of a compact oriented n-manifold M . The trace

is pairing with the fundamental class [M ] ∈ Hn(M). If there is odd coho-

mology, then it is commutative in the graded sense because of signs in the

commutation rule for cup products. For example, if M = S2 then we obtain

the truncated polynomial algebra C[x]/(x2). The corresponding field theory

plays a role in the construction of Khovanov homology for links [Kh, B-N].

If the Frobenius algebra V is semisimple, then we can simultaneously di-

agonalize the multiplication operators Ma(b) = ab, a, b ∈ V and so find

a basis of commuting idempotents e1, e2, . . . , en ∈ V : thus eiei = ei and

eiej = 0 if i �= j. The Frobenius algebra is determined up to isomorphism

by nonzero complex numbers λ1, λ2, . . . , λn defined by τ(ei) = λi. In this

case everything in the field theory F with F (S1) = V is easily computed

in terms of the basis {ei} and the numbers λi. For example the 2-holed

torus in Figure 14 maps to the endomorphism ei 	→ λ−1
i ei of V and a closed

surface Xg of genus g maps to the complex number

(4.14) F (Xg) =
∑

λ1−g
i .

These computations are made by chopping the surfaces into the elementary

bordisms in Figure 13 and their time-reversals. Let G be a finite group and

A = Map(G,C) the vector space of complex-valued functions on G. Then
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time

Figure 14. Torus with incoming and outgoing boundary circles

A is an associative algebra under the convolution product

(4.15) (f1 ∗f2)(g) =
∑

g1g2=g

f1(g1)f2(g2), g, g1, g2 ∈ G, f1, f2 : G → C.

We also define the trace

(4.16) τ(f) =
f(e)

#G
,

where e ∈ G is the identity element. The product is not commutative if

G is not abelian. Let V be the center of A, the space of class functions

on G; it is a commutative Frobenius algebra which can be identified with

the complexification R(G)⊗C of the representation ring of G. Let FG denote

the 2-dimensional oriented topological field theory with FG(S
1) = V guar-

anteed by Theorem 4.12. The complexified representation ring is semisim-

ple. Classical orthogonality formulas of Schur show that the characters χi

of the irreducible complex representations of G are, up to scale, the com-

muting idempotents ei =
(
χi(1)/#G

)
χi. Then we easily compute that

λi =
∑

χi(1)
2/#G and from (4.14) the partition function of a closed con-

nected oriented surface is

(4.17) FG(X) =
∑

χ irreducible
character of G

(
χ(1)

#G

)Euler(X)

,

where Euler(X) is the Euler characteristic of X.

The construction of FG which relies on Theorem 4.12 takes as input the

complexified representation ring and uses Morse theory to produce a topo-

logical field theory. There is also a direct geometric construction of this
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simple finite theory. For any manifold M let FM denote the collection of

principal G-bundles P → M . So P is a manifold with a free right G-action

and quotient M . In other terms P → M is a covering space which is Ga-

lois, or regular, but note that P need not be connected. For example, if

M = S1 and G = Z/nZ for some positive integer n, then there are n dis-

tinct isomorphism classes of principal G-bundles over M ; the connectivity

of the total space of a cover depends on the prime factorization of n. For

any manifold FM is a category: a morphism (P ′ → M) −→ (P → M) is

a smooth map ϕ : P ′ → P which commutes with the G-action and covers

the identity map of M . This category is a groupoid since all morphisms are

invertible. For M = pt there is only one G-bundle up to isomorphism, the

trivial bundle P = G with G acting by right multiplication, and the group

of automorphisms is G acting by left multiplication on P . Figure 15 depicts

an groupoid equivalent to Fpt. There is a single object, the set of arrows

g

Figure 15. G-bundles over pt

is G, and composition of arrows is given by the group law. For M = S1

if we introduce a basepoint p ∈ P on a G-bundle P → S1, then we can

compute the holonomy, or monodromy, around the circle (after choosing an

orientation), which is an element of G. The bundle with basepoint is rigid:

any automorphism which fixes the basepoint is the identity. The group G

acts simply transitively on the set of basepoints over a fixed point of S1,

and it conjugates the holonomy. In this way we see that FS1 is equivalent

to the groupoid G//G of G acting on itself by conjugation. It is depicted in

Figure 16. The set of isomorphism classes π0(FS1) is the set of conjugacy

classes in G and the automorphism group π1(FS1 , P ) at a G-bundle with

e x

g

gxg-1

Figure 16. G-bundles over S1

holonomy x is the centralizer group of x in G.
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Principal G-bundles are local and contravariant. Consider a bordism, as

in Figure 1 with the arrow of time pointing to the right. The inclusions

of the incoming and outgoing boundary induce restriction maps of bundles,

which are homomorphisms of groupoids:

(4.18) FX

s t

FY0 FY1

A diagram of the form (4.18) is a correspondence, which is a generalization

of a homomorphism from FY0 to FY1 . Namely, if s is invertible, then s ×
t embeds FX into FY0 × FY1 as the graph of t ◦ s−1. A composition of

bordisms (Figure 3) induces a composition of correspondences

(4.19) FX′′◦X′

r′ r′′

FX′

s′ t′

FX′′

s′′ t′′

FY0 FY1 FY2

The locality of principal G-bundles is hidden in this statement: the groupoid

FX′′◦X′ of G-bundles on the composition X ′′ ◦X ′ is the fiber product of t′

and s′′; that is, a G-bundle P → X ′′ ◦X ′ is a triple (P ′, P ′′, θ) consisting of

G-bundles P ′ → X ′, P ′′ → X ′′, and an isomorphism θ : P ′ ∣∣
Y1

→ P ′′ ∣∣
Y1

of

their restrictions to Y1.

Correspondence diagrams can often be “linearized” into honest maps.

For the field theory FG we use closed oriented 1-manifolds Y and compact

oriented 2-dimensional bordisms X. On 1-manifolds we define

(4.20) FG(Y ) = Hom
(
FY ,C

)
.

Here we view C as a groupoid with only identity morphisms. Then homo-

morphisms FY → C assign complex numbers to objects in FY so that the

numbers at each end of a morphism are equal. In other words, Hom(FY ,C) is

the vector space of invariant functions on FY , so can be identified with
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Map
(
π0(FY ),C

)
, the space of functions on equivalence classes of G-bundles.

Then to a correspondence (4.18) we define

(4.21) FG(X) = t∗ ◦ s∗ : FG(Y0) −→ FG(Y1)

as pullback followed by pushforward. The fibers of t are (equivalent to)

groupoids with finitely many objects, each with a finite stabilizer group.

The pushforward t∗ of a function φ on FX is the sum

(4.22) t∗(φ)(y) =
∑
x

φ(x)

#Aut(x)
, y ∈ FY1 ,

over the equivalence classes x in the fiber t−1(y) of the value of φ divided

by the order of the automorphism group. (This formula makes clear that

FG may be defined on rational vector spaces.) Key point: the fact that

(4.19) is a fiber product implies that the push-pull construction takes com-

positions of bordisms to compositions of linear maps. In other words, there

is an a priori proof that the push-pull construction produces a homomor-

phism FG : BordSO〈1,2〉 → VectC of symmetric monoidal categories. The en-

terprising reader can now compute that FG(S
1) is the vector space of cen-

tral functions on G, and that the basic bordisms in Figure 13 map to the

convolution product, the character of the identity representation, and the

trace (4.16).

Now suppose X is a closed oriented 2-manifold. It is interpreted as a

bordismX : ∅1 → ∅1. In grand Bourbaki style the groupoid of G-bundles F∅1

has a single object with only the identity object. (After all, F maps disjoint

unions to Cartesian products, and ∅1 is the tensor unit for disjoint union.)

In this case (4.21) specializes to the sum of the constant function 1 over FX :

it counts (with automorphisms) the G-bundles over X. If X is connected

then that count of bundles is

(4.23) FG(X) =
#Hom

(
π1(X,x), G

)
#G

;

the numerator counts G-bundles with a basepoint over x and the group G

acts simply transitively on the basepoints.

Theorem 4.24. Let X be a compact oriented connected 2-manifold and G a

finite group. Then

(4.25) #Hom
(
π1(X,x), G

)
= (#G)

∑
χ irreducible
character of G

(
χ(1)

#G

)Euler(X)

.
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The theorem follows immediately by comparing (4.23) and (4.17). The proof

is representative of how topological field theory is used in more complicated

situations. The invariant on the left hand side of (4.25), initially defined for

closed 2-manifolds, is extended to an invariant for compact 2-manifolds with

boundary which obeys a gluing law. So it is computed by chopping X into

elementary pieces (as in Figure 13 together with the time-reversal of m).

Remark 4.26. The appearance of the Euler characteristic in (4.25) suggests

an extension of FG which includes 0-manifolds. They would appear as cor-

ners of 2-manifolds and boundaries of 1-manifolds. Then in a triangulation

of X, the count of vertices, edges, and triangles in the triangulation should

combine to give Euler(X) and a new proof of (4.25). In such an extended

field theory we have more locality, so more decompositions and hence more

computational flexibility. We take up extended theories in §5 and pursue

this idea in Example 5.7.

Remark 4.27. There is a variation on (4.21) in which FX in (4.18) carries

an integral kernel. In that case the pull-push formula (4.21) is modified to

pull-multiply-push. The integral kernel must be local in that it multiplies

in the fiber product (4.19). In this 2-dimensional theory we can obtain

such an integral kernel by starting with a cocycle for a class in the group

cohomology H2(G;C/Z).

The theory FG was introduced by Dijkgraaf andWitten [DW]. See [FQ],[F]

for more details about defining FG by counting principal G-bundles. The

lecture notes [Q] contain elaborations and many more examples.

The push-pull construction is a finite version of the Feynman functional

integral in quantum field theory. The groupoid FM consists of gauge fields

for a finite group G; if G is a Lie group, then gauge fields form the groupoid

of G-connections on M . The integral kernel described in Remark 4.27 is the

exponential of the classical action of the field theory. The pushforward t∗ is

the Feynman integral or functional integral or path integral over the space

of fields (with fixed boundary condition). In almost all physically interest-

ing examples the space, or stack, of fields is not finite, but rather is infinite

dimensional. One way to define pushforward t∗ on functions is via inte-

gration theory, which of course requires a measure on the space of fields.

(There are alternatives, at least for some topological theories; see [FHT]

for one example.) Furthermore, the measures must be consistent with the

fiber product (4.19) under composition of bordisms. Such measures have

not been constructed rigorously in most examples of physical interest. The
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example of finite gauge theories, while it nicely illustrates many topologi-

cal and algebraic aspects, misses completely many of the central analytical

issues in quantum field theory.

5. n-categories and extended topological quantum field theory

In this section we extend the definition of an n-dimensional topological

field theories in two directions: (i) to invariants of manifolds of all dimen-

sions ≤ n and (ii) to invariants of families of manifolds. These extensions

go beyond what was traditionally done in quantum field theory.

Standard topological field theories, as in Definition 2.6, are local in that

invariants of n-manifolds are computed by cutting along closed codimen-

sion 1 submanifolds. We saw after Theorem 4.24 that it might be desirable

to go further and cut along codimension 2 submanifolds as well, so have

n-manifolds with corners. Once we take that plunge we may as well con-

tinue cutting in higher and higher codimension until we are cutting along

0-manifolds. In other words, we end up considering n-manifolds with cor-

ners of all codimension: the local model for the maximal corner is a corner

in real affine space, {(x1, x2, . . . , xn) ∈ A
n : xi ≥ 0} near (0, 0, . . . , 0).

In a bottom up view, rather than a top down view, we build higher di-

mensional manifolds by time evolution of lower dimensional manifolds. This

is illustrated in Figure 10 by the time evolution of 0-manifolds to produce

1-manifolds. Now we evolve again, introducing a second time as in Fig-

ure 17. Let t1, t2 ∈ [0, 1] denote the times, so the space of times is the

t1

t2

Figure 17. Two-time evolution of two points

square [0, 1] × [0, 1]. At each of the four corners t1, t2 ∈ {0, 1} lies the 0-

manifold Y consisting of two points. At time t2 = 0 they evolve in t1 via

the identity bordism, whereas at time t2 = 1 they evolve as the evaluation
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followed by the coevaluation. (These 1-dimensional bordisms are pictured in

Figure 10). The evolution in t2 is a 2-dimensional bordism W between these

two 1-dimensional bordisms X0, X1. As a manifold it is a 2-dimensional

manifold with corners, but as a bordism we remember the time evolutions.

Morally, as in §2 it is only the arrows of time which matter—and these only

near the boundaries and corners—but it is convenient both heuristically

and technically to think in terms of actual time functions. An algebraic

representation of this two-time evolution is:

(5.1) Y

X1

X0

W Y

The algebraic structure which includes (5.1) is a 2-category. In addition

to objects x and morphisms f, g : x → y mapping between them, there are

now 2-morphisms η : f ⇒ g which map between morphisms. For clarity

‘morphisms’ are now termed ‘1-morphisms’. In the 2-category Bord〈0,1,2〉
the objects are compact 0-manifolds, the 1-morphisms are 1-dimensional

bordisms, and the 2-morphisms are 2-dimensional bordisms. A 2-category

has two associative composition laws, easily seen pictorially in Bord〈0,1,2〉.

Namely, we can compose horizontally in the first time t1 or vertically in

the second time t2. Disjoint union is an extra algebraic structure—still

called a symmetric monoidal structure—and the empty manifolds are iden-

tity elements for disjoint union. So, for example, a closed 2-manifold W is

interpreted as a 2-morphism W : ∅1 ⇒ ∅1 in Bord〈0,1,2〉. For now we leave

unspecified what sort of extra topological data (orientation, framing, . . . )

we assume present.

The saddle in Figure 17 is the elementary bordism in Morse theory de-

picted in Figure 4. In other words, it is the 2-manifold D1 × D1 which

implements the surgery beginning with S0 ×D1 and ending with D1 × S0.

Here D1 is the standard closed 1-ball. The general surgery

(5.2) Dp ×Dq : Sp−1 ×Dq −→ Dp × Sq−1,

can be written algebraically in a diagram similar to (5.1) with Y = Sp−1 ×
Sq−1. Morse theory tells that a manifold has a handlebody decomposition

into elementary bordisms (5.2). We might conclude that 2-categories go



28 D. S. FREED

far enough, and that nothing is to be gained by chopping further. We

could, after all, make a 2-category whose objects are closed (n−2)-manifolds

and with 1-morphisms and 2-morphisms as their time evolutions. But the

structure simplifies if we don’t stop there and rather go all the way down to

points.

Therefore, to study manifolds of dimension ≤ n, or equivalently to study

topological field theories of dimension n, we are led to the n-category

Bord〈0···n〉 whose objects are compact 0-manifolds and whose k-morphisms

(1 ≤ k ≤ n) are k-time evolutions of objects. There are k composition laws

for k-morphisms, and they satisfy various compatibilities. Disjoint union

gives a symmetric monoidal structure. It is a complicated combinatorial

problem to track all of this data. The relevance of higher categories to

topological field theory was understood in the early 1990s, but at that time

rigorous foundations were not available. In the intervening years several ap-

proaches and definitions have been advanced. We will not attempt a formal

definition here, but refer the reader to [BD, L1] for more detailed exposition

and references.

The n-category Bord〈0···n〉 is the first extension we envisioned at the be-

ginning of this section. The second is to families of manifolds. It turns out

that this can be encoded by extending the n-category Bord〈0···n〉 higher up:

we adjoin (n+1)-morphisms, (n+2)-morphisms, etc. Namely, if W0,W1 are

n-dimensional bordisms we define an (n+1)-morphism ϕ : W0 → W1 to be a

diffeomorphism which preserves all of the “boundary data”. An n-morphism

is a map between two (n − 1)-morphisms, each of which is a map between

two (n− 2)-morphisms, and on down. The diffeomorphism ϕ must preserve

the implicit identifications. In terms of the n-time evolution, ϕ must be

compatible with the data at each of the 2n extreme times ti ∈ {0, 1}. Since
ϕ is a diffeomorphism, it is invertible. We continue and define an (n + 2)-

morphism ϕ0 → ϕ1 to be an isotopy between the diffeomorphisms ϕ0 and ϕ1,

again preserving the boundary data. Isotopies are also invertible, up to a

higher isotopy. Continuing in this way we have k-morphisms for all k, so

an ∞-category. But it has the property that every k-morphism for k > n is

invertible.

Remark 5.3. A higher category in which every morphism is invertible—

i.e., an (∞, 0)-category—is a combinatorial model for a space. Since every

morphism is invertible, this is also called an ∞-groupoid. So whereas an
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n-category has sets of n-morphisms, an (∞, n)-category has spaces of n-

morphisms. An n-category may be extended to a discrete (∞, n)-category

in which all k-morphisms for k > n are identity maps.

Definition 5.4. Let n ∈ Z
>0. An (∞, n)-category is an ∞-category in

which every k-morphism is invertible for k > n.

‘Definition’ is not really appropriate as we have not defined ∞-categories!

There are complete definitions for (∞, n)-categories, in fact several [Ba, R,

Be], and some ongoing work [BS] which axiomatizes the notion of (∞, n)-

category, studies the collection of all such, and compares the existing models.

Definition 5.5. Bordn is the (∞, n)-category whose objects are compact 0-

manifolds, k-morphisms for 1 ≤ k ≤ n are k-time evolutions of objects, and

k-morphisms for k > n are (k − n − 1)-fold iterated isotopies of diffeomor-

phisms. It is symmetric monoidal under disjoint union.

Again this is only a descriptive definition.

The manifolds in Bordn typically carry extra data. For example, there is

an (∞, n)-category BordSOn of oriented bordisms. There is also a bordism

category of bordisms with framing, but in an unstable9 sense. Namely, an

n-framing on a k-bordism W in Bordfrn is a trivialization of TW ⊕ (n− k),

where (n−k) is the trivial bundle of the indicated rank. The (∞, n)-category

of unoriented manifolds is denoted BordOn . We use ‘Bordn’ generically to

denote any of these and many other similar possibilities.

Analogous to Definition 2.6 we consider representations of Bordn. We

allow an arbitrary codomain.

Definition 5.6. Let C be a symmetric monoidal (∞, n)-category. An ex-

tended topological field theory with values in C is a homomorphism

F : Bordn → C.

The homomorphism property means that F respects the n composition laws

as well as the symmetric monoidal structures. The cobordism hypothesis,

which we take up in the next section, determines the space of homomor-

phisms F in terms of C.
For the remainder of this section we indicate some examples which illumi-

nate the idea of an extended field theory and the flexibility of Definition 5.6.

Example 5.7. Let G be a finite group. Recall from §4 the 2-dimensional

topological field theory FG : BordSO〈1,2〉 → VectC. In (4.15) we introduced the

9Framings on manifolds used to define framed bordism groups—isomorphic to stable
homotopy groups of spheres—are stable.
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algebra A = Map(G,C) of functions on G under convolution, but only its

center made an appearance in FG—as FG(S
1). There is an extended field

theory F̂G of 0-, 1-, and 2-manifolds which has F̂G(pt+) = A. The codomain

(∞, 2)-category C of any extension has the property that the (∞, 1)-category

HomC(1, 1) of endomorphisms of the tensor unit 1 is identified with VectC.

In fact, VectC is discrete: objects are complex vector spaces, 1-morphisms

are linear maps, and there are no non-identity higher morphisms. So we

might hope that C is also discrete, an ordinary 2-category. Furthermore, if

F̂G(pt+) is to be A, then objects of C are algebras. Thus let C = AlgC be the

2-category whose objects are complex algebras. If A0, A1 ∈ AlgC, then we

define a 1-morphism B : A0 → A1 to be an (A1, A0)-bimodule B, a complex

vector space B with a left action of A1 and a right action of A0. Composition

is by tensor product over algebras: if B : A0 → A1 and B′ : A1 → A2,

then B′ ◦ B : A0 → A2 is the (A2, A0)-bimodule B′ ⊗A1 B. The symmetric

monoidal structure is given by tensor product over C. The algebra C is

the tensor unit 1 and HomAlgC(1, 1) is the collection of (C,C)-bimodules,

which is canonically VectC, as desired. A 2-morphism between bimodules is

a linear map which intertwines the algebra actions.

We pause to remark that we have climbed to the next categorical level—

from 1-categories to 2-categories—by endowing objects in a 1-category with

an associative unital composition law. Complex vector spaces form a 1-

category, whereas complex vector spaces which are algebras form a 2-category.

This is an important general idea, which can be implemented at all cate-

gorical levels and also can be iterated. For example, if we consider complex

vector spaces with 2 composition laws we obtain a 3-category (of commu-

tative algebras). We will meet more examples below. We can embed AlgC
into the more familiar (?) 2-category of C-linear categories CatC: an alge-

bra A maps to the linear category of left A-modules. It is usually easier

to scale categorical heights via algebra structures than by introducing more

elaborate objects. To put this construction in context, we observe that an

isomorphism in the 2-category of algebras is a Morita equivalence of alge-

bras.

Returning to

(5.8) F̂G : BordSO2 −→ AlgC,

once we posit F̂G(pt+) = A = Map(G,C), we can compute F̂G(S
1) as

follows. We know that F̂G(pt−) is the dual to F̂G(pt+), since pt+ and

pt− are dual in BordSO2 , and it turns out that the dual algebra is the opposite
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algebra Ao. The coevaluation in Figure 10 is the left (A ⊗ Ao)-module A,

and the evaluation is the right (Ao⊗A)-module A. After permuting the two

boundary points of the evaluation, we compose coevaluation and evaluation

to compute

(5.9) F̂G(S
1) = A ⊗A⊗Ao A.

This tensor product is the Hochschild homology of the algebra A. We

can easily compute it explicitly. Tensoring over A gives the tensor prod-

uct A ⊗A A of the right A-module A with the left A-module A, which is

canonically A by multiplication. Then the Ao-action is by left and right mul-

tiplication, so letting [A,A] ⊂ A denote the subspace spanned by elements

of the form a1a2 − a2a1, a1, a2 ∈ A, we conclude F̂G(S
1) = A/[A,A]. This

is not the center of A, which is what we expect from the text after (4.22).

To identify the vector space A/[A,A] with the center of A we need one more

piece of data, a nondegenerate trace τ : A → C on A. Nondegeneracy means

that a1, a2 	→ τ(a1a2) is a nondegenerate pairing, and then we identify the

quotient A/[A,A] with the orthogonal subspace [A,A]⊥ ⊂ A, which is easily

identified with the center of A. The pair (A, τ) is a Frobenius algebra. For

A = Map(G,C) we use the trace (4.16).

The cobordism hypothesis, stated for framed manifolds in Theorem 1.2,

asserts that F̂G is determined by its value on pt+. This is true here, but

‘value on pt+’ must be interpreted as the pair (A, τ). The extra datum τ

is necessary as F̂G is an oriented theory, not simply a framed theory; see

Theorem 6.11 and Example 6.13.

In §4 we described an approach to the non-extended theory FG using a

finite version of the path integral in physics, which amounts to counting

principal G-bundles. The finite path integral extends to give an a priori

construction of F̂G in which F̂G(pt+) = A is the result of a computation;

see [F, FHLT] for details.

Example 5.10. 3-dimensional Chern-Simons theory [W3] was the example

which most pointed the way towards extended topological field theories. The

approach of Reshetikhin-Turaev [RT1, RT2] to the resulting invariants of 3-

manifolds and links begins with a quantum group, in the form of a complex

linear category with extra structure, a modular tensor category [MSei]. By

contrast, Witten begins with the Chern-Simons functional and uses the path

integral. The relationship between the approaches, worked out in [F] for fi-

nite gauge groups, is that Chern-Simons is a (partially) extended theory
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of 1-, 2-, and 3-manifolds whose value on S1 is the modular tensor cate-

gory. A complete construction of this 1-2-3 theory beginning from quantum

group data was given in [Tu]; see also [Wa]. There is current work, for

example [BDH], to construct a fully extended 0-1-2-3 theory.

Example 5.11. The previous two examples are discrete: there are no inter-

esting invariants for families of manifolds beyond those for single manifolds.

That an extension of Definition 2.6 to families would be fruitful emerged in

the 1990s from 2-dimensional field theories. Segal promoted the idea of a

cochain-valued topological field theory [Se3], and there were several mathe-

matical works which pointed towards invariants for families of manifolds; a

quirky sample is [LZ, G, KM, BC]. The most definitive work in this direction

is by Kevin Costello [Co], who constructed a theory of “open-closed” topo-

logical 2-dimensional field theories in families from Calabi-Yau categories.

These are closely related to fully extended 2-dimensional theories; see [L1,

§4.2].

Example 5.12. Another motivating example for the cobordism hypothesis

which includes invariants for families of manifolds is string topology, which

defines invariants of compact manifolds using its loop space and Riemann

surfaces. It was introduced by Chas-Sullivan [CS], and there is a large

literature which follows. See [L1, §4.2] for the relation with the cobordism

hypothesis.

6. The cobordism hypothesis

Recall from §4 that objects in the image of a non-extended topological

field theory obey a finiteness condition, expressed in categorical terms by du-

alizability (Definition 4.6). There is an analogous finiteness condition called

adjointability for k-morphisms, 1 ≤ k ≤ n−1, in an extended n-dimensional

field theory. We give the definition for 1-morphisms, which specializes to

the traditional notion of adjoint functors in category theory [Ka] for the

2-category of categories.

Definition 6.1. Let C be a 2-category; x, y ∈ C objects in C; and suppose

f : x → y, g : y → x are 1-morphisms. Then f is a left adjoint to g if

there exist 2-morphisms u : idx ⇒ g ◦ f and c : f ◦ g ⇒ idy such that the
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compositions

(6.2) f = f ◦ idx id×u
===⇒ f ◦ g ◦ f c×idy

===⇒ idy ◦f = f

and

(6.3) g = g ◦ idy id×u
===⇒ g ◦ f ◦ g c×idx===⇒ idx ◦g = g

are identity 2-morphisms.

We then say that g is a right adjoint to f , and u, c are the unit and counit

of an adjunction. The compositions (6.2) and (6.3) are the 2-morphism

version of the S-diagram compositions (4.7). The corresponding definition

for (∞, n)-categories and higher morphisms is similar, but the compositions

are only the identity maps up to higher morphisms, or equivalently are

identity maps in a homotopy category which remembers higher morphisms

only up to equivalence. Invertible maps have adjoints—the inverse is an

adjoint—so adjointability is weaker than invertibility.

Remark 6.4. If an n-morphism in an n-category, or (∞, n)-category, is ad-

jointable then it is invertible. This follows since the unit and counit of an

adjunction, which are (n+ 1)-morphisms, are invertible.

Let C be a symmetric monoidal (∞, n)-category and F : Bordn → C an

extended field theory. Then just as F (pt) is dualizable, so too is F (M) ad-

jointable for every k-dimensional bordism M with 1 ≤ k ≤ n − 1. This is

an extended finiteness condition satisfied by an extended topological field

theory. We extract from C all objects which have duals, and whose duality

data have adjoints, which in turn have adjoints, etc.

Lemma 6.5. [L1, §2.3] Let C be a symmetric monoidal (∞, n)-category.

There is an (∞, n)-category Cfd and a homomorphism i : Cfd → C so that (i)

every object in Cfd is dualizable and every k-morphism, 1 ≤ k ≤ n − 1, is

adjointable, and (ii) i : Cfd → C is universal with respect to (i).

Here ‘fd’ stands either for ‘fully dualizable’ or ‘finite dimensional’. An

(∞, n)-category which satisfies (i) is said to “have duals”, as in the state-

ment of Theorem 1.1. The finiteness condition on a topological field theory

F : Bordn → C may be summarized by

(6.6) Cfd

iBordn
F

C
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In other words, F factors through Cfd.

Extended topological field theories F : Bordn → C are the objects of an

(∞, n)-category we denote Hom(Bordn, C). A 1-morphism η : F0 → F1 be-

tween two homomorphisms assigns a (k + 1)-dimensional bordism η(M) :

F0(M) → F1(M) to each k-dimensional bordism M . The fact that ad-

jointable n-morphisms are invertible (Remark 6.4) implies that any 1-mor-

phism η is in fact an isomorphism. The same applies to higher morphisms.

It follows that Hom(Bordn, C) is an (∞, 0)-category—all morphisms are

invertible—so according to Remark 5.3 can be viewed as a space. In other

words, the collection of extended topological field theories with values in C
is a space.

The cobordism hypothesis identifies the space Hom(Bordn, C) with a space

constructed directly from C by combining Lemma 6.5 with another universal

construction.

Lemma 6.7. [L1, §2.4] Let D be an (∞, n)-category. There is an ∞-

groupoid D∼ and a homomorphism j : D∼ → D so that (i) every k-morphism,

k > 0, in D∼ is invertible, and (ii) j : D∼ → D is universal with respect

to (i).

The ∞-groupoid D∼, which is an ∞-category in which every morphism is

invertible, may be constructed from D by removing all noninvertible mor-

phisms.

Finally, we can state a precise version of the cobordism hypothesis, first

for n-framed manifolds.

Theorem 6.8 (Cobordism hypothesis: framed version). Let C be a sym-

metric monoidal (∞, n)-category. Then the map

(6.9)
Hom(Bordfrn , C) −→ (Cfd)∼

F 	−→ F (pt+)

is a homotopy equivalence of spaces.

At this point the reader should refer back to the heuristic versions stated

in §1 as well as the discrete 1-dimensional version in Theorem 4.8. In par-

ticular, the cobordism hypothesis is a theorem about smooth manifolds and

their diffeomorphism groups, which is reflected by the method of proof.

Suppose M is a bordism of dimension k ≤ n which is n-framed. Recall

that the n-framing is an isomorphism (n) → TM×(n−k), where (j) denotes
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the trivial real vector bundle of rank j overM . The orthogonal group10 O(n)

acts on framings by precomposition with constant orthogonal maps (n) →
(n). This induces an action of O(n) on the space Hom(Bordfrn , C).

Corollary 6.10. The orthogonal group O(n) acts on (Cfd)∼.

Let G be a Lie group equipped with a homomorphism ρ : G → O(n). A

G-structure on a bordism M is a reduction of structure group of its tangent

bundle to G along ρ. More precisely, choose a Riemannian metric on M

(this is a contractible choice). Then a G-structure is a principal G-bundle

P → M together with an isomorphism of the associated G-bundle ρ(P ) with

the bundle of orthonormal frames of TM⊕(n−k). For example, for G = {e}
a G-structure is an n-framing, and for G = SO(n) it is an orientation. There

is a bordism category BordGn of manifolds with G-structure.

Theorem 6.11 (Cobordism hypothesis: G-structure version). The map

(6.12)
Hom(BordGn , C) −→

(
(Cfd)∼

)hG
F 	−→ F (pt+)

is a homotopy equivalence between the space of extended topological field

theories on G-manifolds and the homotopy fixed point space of the G-action

on (Cfd)∼.

Here G acts through the homomorphism ρ : G → O(n) and the O(n)-action

given in Corollary 6.10.

Example 6.13. For n = 2 an oriented 2-dimensional theory is determined

by the value on pt+, but in the fixed point space. Consider C = AlgC, as in

Example 5.7. First, the 2-category Algfd
C
of fully dualizable complex algebras

has objects finite dimensional semisimple algebras, i.e., finite products of

matrix complex algebras. (A careful proof may be found in [Da, §3.2].) A

point in the homotopy fixed point space of the SO(2)-action includes extra

data—in this case being a fixed point is not a condition—and the extra

data here is the nondegenerate trace τ discussed in Example 5.7; see [FHLT,

Example 2.8] for details.

The exhausted reader. . . and author. . .may be relieved to know that we

are not going to attempt to summarize the proof sketched in [L1] in any

10It is perhaps more natural to use the full general linear group GL(n;R), but all of the
topological information is carried by the maximal compact subgroup O(n) ⊂ GL(n;R).
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detail. Rather, we give a very rough intuition for why the cobordism hy-

pothesis might be true. Our exposition in §4, in particular the proof of

Theorem 4.8, emphasizes the role of Morse theory. The existence of Morse

functions allows the decomposition of a bordism into a composition of ele-

mentary bordisms (5.2). These elementary bordisms encode the evaluations

and coevaluations, or units and counits, of duality and adjointness data.

That is clear in the proof of Theorem 4.8. As another example, Figure 17

may be read as a counit for the adjunction between the two 1-morphisms

coev, ev in Figure 10. So if x ∈ C is fully dualizable, a choice of duality

data—duals and adjoints all the way up—defines F on elementary bordisms.

As arbitrary bordisms are compositions of elementary bordisms, F can be

extended to arbitrary bordisms. In other words a Morse function gives,

in principle, a way to evaluate F (M) for every bordism M . The issue is

whether F (M) is well-defined. The duality data involves choices, and we

must be sure that those choices can be made coherently. This is expressed

via contractibility statements. The first is that the space of duality data for

a dualizable object x is contractible. The second generalizes the connectivity

statement at the heart of Cerf theory [C]. Lurie uses a higher connectiv-

ity theorem of Kiyoshi Igusa [I] for the space of generalized framed Morse

functions. Such functions relax the nondegeneracy condition at a critical

point to allow a single degeneracy, as in (2.9), and also include a framing

of the negative definite subspace at a critical point. Igusa proves that on

a k-dimensional manifold this space is k-connected.11 These contractibility

statements are central to the proof, but it is a highly nontrivial problem to

organize the higher categorical data to apply these theorems. The solution

to that problem, described in detail in [L1], is equally central to the proof.

7. Implications, extensions, and applications

Some brief vignettes illustrate the scope of the extended topological field

theory and the cobordism hypothesis.

11It is in fact a consequence of the cobordism hypothesis that this space of functions
is weakly contractible. This has been proved independently of the cobordism hypothesis
in [EM] and also in unpublished work of Galatius.
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Invertible theories and Madsen-Tillmann spectra

Recall from Lemma 6.7 that any (∞, n)-category D has an underlying

∞-groupoid D∼, which may be identified with a space. There is a quotient

construction as well.

Lemma 7.1. Let D be an (∞, n)-category. There is an ∞-groupoid |D| and
a homomorphism q : D → |D| so that (i) every k-morphism, k > 0, in |D| is
invertible, and (ii) q : D → |D| is universal with respect to (i).

These constructions are relevant to invertible topological field theories.

Definition 7.2. A topological field theory α : Bordn → C is invertible if

α(M) is invertible for all objects and morphisms M .

It follows from the cobordism hypothesis that α is invertible if and only

if α(pt+) is invertible. An invertible field theory α : Bordn → C factors

through |Bordn | and (Cfd)∼:

(7.3) Bordn
α

q

C

|Bordn | α̃
(Cfd)∼

j

Since Bordn and C are symmetric monoidal, so too are |Bordn | and (Cfd)∼.

An infty-groupoid is equivalent to a space (Remark 5.3), and a symmetric

monoidal ∞-groupoid is equivalent to the 0-space of a spectrum. Further-

more, α̃ is an infinite loop space map. This reduces the study of invertible

topological field theories to a problem in stable homotopy theory.

Remark 7.4. Invertible field theories play a role in ordinary quantum field

theory, for example as anomalies.

A corollary of the cobordism hypothesis [L1, §2.5] determines the ho-

motopy type of the spectrum |Bordn |. Consider first the bordism (∞, n)-

category Bordfrn of n-framed manifolds. The cobordism hypothesis, in the

heuristic form Theorem 1.1, asserts that Bordfrn is free on one generator.

It follows that so too is |Bordfrn |. The latter is a spectrum, and the free

spectrum on one generator is the sphere spectrum. For the bordism (∞, n)-

category of G-manifolds BordGn the cobordism hypothesis in the form Theo-

rem 6.11 implies that |BordGn | is the nth suspension of a Madsen-Tillmann

spectrum. (These spectra are mentioned in §2 before Definition 2.5.)
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An ∞-groupoid—or (∞, 0)-category—is a model for a space. We may

view an (∞, n)-category as a generalization of a space which allows nonin-

vertibility. From that perspective the cobordism hypothesis is a generaliza-

tion of the Madsen-Tillmann conjecture.

Variations on the cobordism hypothesis

For another approach to extended topological field theories, see [MoW].

In [L1, §4] Lurie describes several applications and extensions of the cobor-

dism hypothesis. One important extension is to manifolds with singularities,

though there are many special cases which do not in fact involve singular-

ities. To illustrate, in Example 5.7 we described a 2-dimensional oriented

field theory F associated to a Frobenius algebra A. Now suppose that M is

a left A-module. Recall that M determines a 1-morphism M : 1 → A in

the Morita 2-category of algebras, where the tensor unit 1 is the trivial al-

gebra C. We might ask what sort of field theory we can associate to the

pair (A,M), assuming sufficient finiteness.. A physicist might describe M

as giving a boundary condition for F , and so extend F to a field theory F̃

in which some boundaries are “colored” with the boundary condition M .

For example, a closed interval with one endpoint colored is associated to M

as a left A-module; the closed interval with both endpoints colored is as-

sociated to M as a vector space. The coloring represents a coning off of a

point, which is viewed as a manifold with singularities. This is just the tip

of the iceberg of possibilities opened up by the cobordism hypothesis with

singularities.

From the point of view of algebra, given that Bordfrn is the free symmetric

monoidal (∞, n)-category with duals on one generator, we might ask how

to describe more general symmetric monoidal (∞, n)-categories specified

by generators and relations. Roughly speaking, the cobordism hypothesis

with singularities identifies these as bordism categories of manifolds with

singularities.

Applications to topology

We indicated briefly in Example 5.10 the important role that Chern-

Simons theory played in the development of extended topological quantum

field theories. That theory encodes invariants of 3-manifolds and links.

Newer invariants of links and low dimensional manifolds were in part in-

spired by notions in extended field theory. Crane and Frenkel [CF] suggested
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that “categorification” of the 3-dimensional invariants would lead to new in-

variants, potentially related to Donaldson invariants. Later Khovanov [Kh]

introduced such a categorification of the Jones polynomial. This now has a

proposed derivation from quantum field theory [GSV, W4].

There is current research in many directions which will potentially take

advantage of more powerful aspects of extended field theories and the cobor-

dism hypothesis in contexts which are not discrete and semisimple. For ex-

ample, the cobordism hypothesis illuminates string topology invariants and

topological versions of Hochschild homology and its cousins [BCT]. It also

appears in several discussions of the 2-dimensional extended topological field

theories relevant for mirror symmetry: the “A-model” and the “B-model”.

There is an enormous literature on this subject; see [Te] for one recent ex-

ample which uses ideas around the cobordism hypothesis.

Applications to algebra

Now we shift focus from topology and bordism categories to the codomain

C. Quite generally a homomorphism in algebra organizes the codomain

according to the structure of the domain. This principle is often applied in

the context of group actions on sets, for example: the structure of orbits

and stabilizers illuminates the situation at hand. Here if F : Bordn → C
is a homomorphism, and F (pt+) = x then we can study x using smooth

manifolds and their gluings.

One application is to Ek-algebras, which are objects in a symmetric

monoidal category which have k associative composition laws. We met E1-

algebras (ordinary associative algebras) in the category VectC of complex

vector spaces in Example 5.7. An E2-algebra in VectC is a commutative

algebra and there is nothing higher up: an Ek-algebra for k > 2 is also a

commutative algebra. More interesting examples are obtained if we look in

other symmetric monoidal categories, for example the ∞-category of chain

complexes. In [L1, §4.1] Lurie describes some relationships between the

cobordism hypothesis and Ek-algebras in (∞, n)-categories. In particular, an

Ek-algebra A in an (∞, n)-category C is automatically k-dualizable, so deter-

mines a homomorphism F : Bordfrk → Ek(C), where Ek(C) is the (∞, n+k)-

category whose objects are Ek-algebras in C. Thus Ek-algebras may be

studied with smooth manifolds. For example, if A is an ordinary algebra

(E1-algebra), then in the associated field theory F (S1) is the Hochschild ho-

mology of A (see (5.9) for a simple example). Since the circle is an E2-algebra

in the bordism category, so too is the Hochschild homology F (S1). This is
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a version of the Deligne conjecture, and precise versions of this argument

and generalizations appear in many works, for example [Co, KS, L2, BFN].

(We remark that there are several other proofs of the Deligne conjecture.)

As another application of the cobordism hypothesis to algebra, we men-

tion ongoing work [DHS] which proves that a fusion category [ENO] is 3-

dualizable. A fusion category is a special type of tensor category, and a

tensor category is an E1-algebra in the 2-category of linear categories. So

tensor categories form a 3-category, and it is in that 3-category that fusion

categories are fully dualizable. The associated 3-dimensional framed field

theory can be brought to bear on the study of fusion categories. We remark

that simple topological diagrams involving 0- and 1-dimensional manifolds

are usually used to study fusion categories and their cousins. The cobordism

hypothesis opens up the possibility of using the more powerful topology of 3-

dimensional manifolds. In related ongoing work of the author and Teleman,

we consider E2-algebras in the 2-category of linear categories; they comprise

the 4-category of braided tensor categories. We prove that modular tensor

categories are invertible, which now gives a 4-dimensional perspective on

quantum groups.

Applications to representation theory

In §4 and in Example 5.7 we illustrated a very simple, discrete 2-dimensional

field theory associated to a finite group G. There is also a 3-dimensional

field theory with values in the 3-category of tensor categories; it attaches the

tensor category of vector bundles over G under convolution to pt. (The the-

ory is unoriented—as is the 2-dimensional theory—so we have an unframed

unoriented unadorned point.) That theory may be viewed as the simplest

case of 3-dimensional Chern-Simons theory (Example 5.10). Ben-Zvi and

Nadler [BN] study the analogous theory for a reductive complex group G.

Discrete categories are futile here; the full force of ∞-categories comes into

play. One would like a 3-dimensional theory which generalizes that of a

finite group, and now attaches the symmetric monoidal ∞-category of D-

modules on G to a point. However, the necessary finiteness conditions are

not satisfied. Instead, they construct a related 2-dimensional field theory,

the character theory, which assigns to a point the Hecke category associated

to G. Then one computes that the category of Lusztig’s character sheaves

is attached to S1. The character theory may be viewed as a dimensional

reduction of a 4-dimensional field theory [KW] related to the geometric
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Langlands program. It seems likely that the topological field theory per-

spective, and the cobordism hypothesis, will shed light on old questions in

the representation theory of semisimple Lie groups.

Echos in quantum field theory

As mentioned earlier, quantum field theorists traditionally only studied

2-tier theories: correlation functions on n-manifolds and Hilbert spaces at-

tached to (n− 1)-manifolds. In recent years the ideas mathematicians have

developed around extended field theories, including the cobordism hypothe-

sis, have seeped into physics. In 2-dimensional conformal field theory there

is a category of boundary conditions, called D-branes, and in topological

versions this is understood to be part of an extended field theory. Higher

dimensional analogs are now common; see [Kap] for a recent review. For ex-

ample, Kapustin-Witten [KW] study a topological twist of the 4-dimensional

N = 4 supersymmetric Yang-Mills theory. Going beyond the traditional two

tiers, this theory attaches a category to every closed 2-manifold. Kapustin-

Witten relate that to a category which appears in the geometric Langlands

program. The story is richer: there is a family of theories parametrized

by CP
1 and S-duality acts as an involution on the theories. This suggests

an equivalence between two different categories attached to a 2-manifold,

which is a topological version of the basic conjecture in the geometric Lang-

lands program.

The maximally supersymmetric N = 4 Yang-Mills theory is the dimen-

sional reduction of a 6-dimensional supersymmetric field theory called The-

ory X which has superconformal invariance. This theory has no classical

description. It is predicted to exist from limiting arguments in string the-

ory. Its mysterious nature justifies the appellation ‘Theory X’. A few prop-

erties can be predicted from string theory, and these can be used to study

dimensional reductions. Among the many protagonists here we mention

Gaiotto [Ga] and Gaiotto-Moore-Neitzke [GMN]. One important idea—

which is clearly inspired by extended field theory and the activity surround-

ing the cobordism hypothesis—is to study dimensional reductions of the

6-dimensional theory as a function of the compactifying manifold. This

is formalized as follows. Suppose F : Bord6 → C is a 6-dimensional ex-

tended topological theory. Then for any closed 2-manifold N we obtain

a 4-dimensional theory FN : Bord4 → HomC
(
F (N), F (N)

)
defined using
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Cartesian product:12 FN (M) = F (N × M). Now view FN as a function

of N . Then we obtain a 2-dimensional extended field theory with values in

the (∞, 4)-category of 4-dimensional field theories! The flexibility in Defini-

tion 5.6 which allows arbitrary codomains is heavily used here. One can get

other field theories by composing with homomorphism out of 4-dimensional

theories. A recent paper [MoT] implements this idea in a physics context,

and predicts the existence of certain holomorphic symplectic manifolds.

Finally, the renewed interest in En-algebras and their role in extended

topological field theories may bring some fresh perspectives to quantum field

theories which are not topological. One axiomatic approach to quantum field

theory [H] assigns operator algebras to open sets and describes how they fit

together. This idea was imported in an algebro-geometric framework in

certain mathematical approaches to 2-dimensional conformal field theory, in

vertex operator algebras [Bo] and chiral algebras [BeDr]. These ideas are

circling back to general quantum field theories [CG] with potential to shed

new light on their structure.

These are only a few examples of the potential that extended topological

field theories and the cobordism hypothesis hold in both mathematics and

physics.
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[T] René Thom, Quelques propriétés globales des variétés différentiables, Com-
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DISPERSIVE EQUATIONS AND THEIR ROLE BEYOND PDE

GIGLIOLA STAFFILANI1

Abstract. Arguably the star in the family of dispersive equations is the Schrödinger
equation. Among many mathematicians and physicists it is regarded as fundamental, in
particular to understand complex phenomena in quantum mechanics.

But not many people may know that this equation, when defined on tori for example,
has a very reach and more abstract structure that touches several fields of mathematics,
among which analytic number theory, symplectic geometry, probability and dynamical
systems.

In this talk I will illustrate in the simplest possible way how all these different aspects
of a unique equation have a life of their own while interacting with each other to assemble
a beautiful and subtle picture. This picture is not yet completely well understood and
many questions and open problems are there ready to be solved by a new generation of
mathematicians.

1. Introduction

In these notes I would like to collect some old and new results addressing very different
mathematical aspects related to semilinear periodic Schrödinger equations in low dimen-
sions. In doing so I will present some open problems that often go behind the field of partial
differential equations and touches upon analytic number theory, probability, symplectic ge-
ometry and dynamical systems.

After the introduction in Section 1 I will set up the stage in Section 2. I will start Section
3 I will start with a (now classical) Strichartz inequality for the periodic linear Schrödinger
equation in two dimensions due to Bourgain. I will continue with some results on local and
global well-posedness for certain nonlinear Schrödinger equations.

In Section 4 I will elaborate on the growth in time of high order Sobolev norms for the
global flow, whenever it exists. I will explain how the estimate of this growth could give
some information on how the frequency profile of a certain wave solution could move from
low to high frequencies while maintaining constant mass and energy (forward cascade.)
I will present two results for the defocusing, cubic, periodic, two dimensional Schrödinger
equation: the first is a polynomial upper bound in time for Sobolev norms of a global generic
solution; the second is a weak growth result, namely that after fixing a small constant δ
and a large one K, one can find a certain solution that at time zero is as small1 as δ and
at a certain time far in the future is as big as K.

In Section 5 I will use certain periodic Schrödinger equations as examples of infinite di-
mension Hamiltonian systems and for them I will present some old and recent results that
are generalizations of fine dimensions ones. As a first example I will consider the cubic
periodic defocusing NLS and I will recall the squeezing theorem due to Bourgain. Next I
will introduce the concept of Gibbs measures associated to periodic semilinear Schrödinger
equations in one dimension. These measure already proposed by Lebowitz, Rose and Speer

1 GS is funded in part by NSF DMS-1068815.
1In terms of a fixed Sobolev norm.

1
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were later proved to be invariant by Bourgain who also used this invariance to show global
well-posedness at a level in which conservation laws are not available. Of course in this
case global well-posedness should be understood as an almost sure result. I will then intro-
duce the periodic derivative nonlinear Schrödinger (DNLS) equation. This is an integrable
system, that also can be viewed as an Hamiltonian system. Proving that it is globally
well-posed for rough data is very challenging. In fact in order to be able to use certain es-
timates one needs to apply a gauge transformation to the equation. Moreover even for the
gauged equation local well-posedness can be obtained via a fixed point argument only on
certain spaces that are of type lp, not necessarily p = 2, with respect to frequency variables.
Because of this when later one wants to introduce a Gibbs measure, which is in turn related
to the Gaussian measure defined on Sobolev spaces Hs, s < 1

2 , one needs to generalize the
definition and take advantage of the more abstract Wiener theory. In spite of several ob-
stacles that one needs to overcome in order to apply a variant of Bourgain’s argument, one
still obtains for the gauged DNLS problem an almost surely global well-posedness result.
Of course at the end one needs to “un-gauge” and I will show how a purely probabilistic
argument will translate the almost surely global well-posedness for the gauged DNLS into
a similar one for the original derivative nonlinear Schrödinger equation.

2. Setting up the stage

The objects of study in these notes is mainly the semilinear Schrödinger (NLS) initial
value problems (IVP)

(1)
{
iut + 1

2∆u = λ|u|p−1u,
u(x, 0) = u0(x)

where p > 1, u : R × Tn → C, and Tn is a n-dimensional torus2. We observe right away
that (1) admits two conservation laws

(2) H(u(t)) =
1
2

∫
|∇u|2(x, t) dx+

2λ
p+ 1

∫
|u(t, x)|p+1 dx = H(u0)

called the Hamiltonian and

(3) M(u(t)) =
∫
|u|2(x, t) dx = M(u0)

called the mass.
Schrödinger equations are classified as dispersive partial differential equations and the

justification for this name comes from the fact that if no boundary conditions are imposed
their solutions tend to be waves which spread out spatially. A simple and complete math-
ematical characterization of the word dispersion is given to us for example by R. Palais in
[41].

It is probably common knowledge that dispersive equations are proposed as models
of certain wave phenomena that occur in nature. But it turned out that some of these
equations appear also in more abstract mathematical areas such as algebraic geometry [29]
and they are found to possess surprisingly beautiful structures. Certainly I am not in the
position to discuss this part of mathematics here, but nevertheless I hope I will be able to
give a glimpse of various connections of these equations with other areas of mathematics.

The interesting aspect of dispersive equations, Schrödinger equations in particular, is
that in later times their solutions do not acquire extra smoothness and neither remain

2Later we will distinguish between a rational and an irrational torus.



DISPERSIVE EQUATIONS AND THEIR ROLE BEYOND PDE 3

compact if the initial profiles were. In particular, since we will impose periodic boundary
conditions, dispersion will be extremely weak. All this will make our analysis more difficult,
but also more interesting.

Probably the most standard questions that one may want to ask about an IVP such
as (1), since it does model physical phenomena, are existence of solutions, stability, time-
asymptotic properties of solutions, blow up etc. Until recently these questions were ad-
dressed in a very deterministic way and I will report on some of these results in Sections
2, 3 and 4. In recent years there has been an increasing interest on addressing these ques-
tions using a natural probabilistic approach, this is some of the content of the remaining
Section 5. The set up for this probabilistic approach is based on viewing (1) as an infinite
dimensional Hamiltonian system. This is done by rewriting the equation as an Hamiltonian
systems for the Fourier coefficients of the solutions to (1). Using this structure one can then
formally define an invariant measure [34] acting on the infinite dimensional space given by
the vectors of Fourier coefficients. This measure, proved to be invariant [5], is able to select
data in rough spaces that can be evolved globally in time even when blow up may occur
and in so doing gives what we call an almost surely global well-posedness.

The infinite dimensional Hamiltonian structure that we can recognize for some NLS
equations, in some cases can be also equipped with a symplectic structure. Then the natural
question is whether one may be able to extend fundamental concepts such a capacity or
prove results such as Gromov’s non-squeezing theorem in this infinite dimensional context,
[6, 21, 32]. In these notes I will recall one of such results, see Theorem 5.13, but much more
needs to be studied and discovered in this area.

It is clear by now that when possible, a strong deterministic and probabilistic approach
to the study of an IVP such as (1) is certainly bound to generate not just some abstract
and beautiful mathematics, but also a deeper understanding of the physical phenomena
that semilinear Schrödinger equations represent.

2.1. Notation. Throughout these notes we use C to denote various constants. If C de-
pends on other quantities as well, this will be indicated by explicit subscripting, e.g. C‖u0‖2
will depend on ‖u0‖2. We use A . B to denote an estimate of the form A ≤ CB, where
C is an absolute constant. We use a+ and a− to denote expressions of the form a+ ε and
a− ε, for some 0 < ε� 1.

Finally, since we will be making heavy use of Fourier transforms, we recall here that f̂
will usually denote the Fourier transform of f with respect to the space variables and when
there is no confusion we use the hat notation even when we take Fourier transform also
with respect to the time variable. In general though we will use the notation ũ if we want
to emphasize that we take the Fourier transform of a function u(t, x) in both space and
time variables.

3. Periodic Strichartz estimates

Let’s start with the classical result of existence, uniqueness and stability of solutions. for
an IVP. It is not hard to understand that these results strongly depend on the regularity
one asks for the solutions themselves and the given data. So we first have to decide how
we “measure” the regularity of function. The most common way of doing so is by deciding
where the weak derivatives of the function “live”. Most of the times we assume that the
data are in Sobolev spaces Hs. In more sophisticated instances one may need to replace
Sobolev spaces with different ones, like Besov spaces, Hölder spaces, and so on.
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Since we will be dealing with functions that have a time variable we will often need mixed
norm spaces, so for example, we may need that f ∈ Lp

xL
q
t , that is ‖(‖f(x, t)‖Lq

t
)‖Lp

x
< ∞.

Finally, for a fixed interval of time [0, T ] and a Banach space of functions Z, we denote
with C([0, T ], Z) the space of continuous maps from [0, T ] to Z.

We are now ready to give the definition of well-posedness for the IVP (1). We start with
the linear Schrödinger IVP

(4)
{
ivt + ∆v = 0,
v(x, 0) = u0(x).

The solution v(x, t) =: S(t)u0(x) of this IVP will be studied below, for now we will use it
to write the solution to (1).

Definition 3.1. We say that the IVP (1) is locally well-posed (l.w.p) in Hs(Rn) if for
any ball B in the space Hs(Rn) there exist a time T and a Banach space of functions
X ⊂ L∞([−T, T ],Hs(Rn)) such that for each initial data u0 ∈ B there exists a unique
solution u ∈ X ∩ C([−T, T ],Hs(Rn)) for the integral equation3

(5) u(x, t) = S(t)u0 + c

∫ t

0
S(t− t′)|u|p−1u(t′)) dt′.

Furthermore the map u0 → u is continuous as a map from Hs into C([−T, T ],Hs(Rn)).
If uniqueness is obtained in C([−T, T ],Hs(Rn)), then we say that local well-posedness is
“unconditional”.

If Definition 3.1 holds for all T > 0 then we say that the IVP is globally well-posed
(g.w.p).

Remark 3.2. The intervals of time are symmetric about the origin because the problems
that we study here are all time reversible (i.e. if u(x, t) is a solution, then so is −u(x,−t)).

Usually the way one proves well-posedness, at least locally, is by defining an operator

Lv = S(t)u0 + c

∫ t

0
S(t− t′)|v|p−1v(t′)) dt′

and then showing that in a certain space of functions X one has a fixed point and as a
consequence a solution according to (5). The hard part is to decide what space X could
work. The general idea is to show strong estimates4 for the solution S(t)u0 of the linear
problem (4), identify the space X from these estimates and expect that the solution u also
satisfies them at least when through (5) one can show that u is a perturbation of the linear
problem. This kind of argument usually works in so called subcritical regimes5 and for short
times; for long times and critical regimes the situation could be much more complicated.

Remark 3.3. Our notion of global well-posedness does not require that ‖u(t)‖Hs(Rn) re-
mains uniformly bounded in time. In fact, unless s = 0, 1 and one can use the conservation
of mass or energy, it is not a triviality to show such an uniform bound. This can be obtained
as a consequence of scattering, when scattering is available. In general this is a question
related to weak turbulence theory and we will address it more in details in Section 4.

3Note that (1) is equivalent to (5) via the Duhamel principle when enough regularity is assumed.
4For example Strichartz estimates in Section 3.
5If we write H(u(t)) = K(u(t)) + λP (u(t)), where K(u(t)) = 1

2

R
|∇u|2(x, t) dx is the kinetic energy and

P (u(t)) = 2
p+1

R
|u(t, x)|p+1 dx is the potential one, then the energy subcritical regime is when the kinetic

energy is stronger than the potential one.
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We are now ready to introduce some of the most important estimates relative to the
solution S(t)u0 to the linear Schrödinger IVP (4). This solution is easily computable by
taking Fourier transform. In fact for each fixed frequency ξ problem (4) transforms into
the ODE

(6)
{
iv̂t(t, ξ)− |ξ|2v̂(t, ξ) = 0,
v̂(ξ, 0) = û0(ξ)

and we can write its solution as

v̂(t, ξ) = e−i|ξ|2tû0(ξ).

We observe that what we just did works both in Rn and Tn.

3.1. Strichartz estimates in Rn. If we define, in the distributional sense,

Kt(x) =
1

(πit)n/2
ei

|x|2
2t ,

we then have

(7) S(t)u0(x) = eit∆u0(x) = u0 ? Kt(x) =
1

(πit)n/2

∫
ei

|x−y|2
2t u0(y) dy.

As mentioned already

(8) Ŝ(t)u0(ξ) = e−i 1
2
|ξ|2tû0(ξ),

and from here S(t)u0(x) can be interpreted as the adjoint of the Fourier restriction operator
on the paraboloid P = {(ξ, |ξ|2) for ξ ∈ Rn}. This remark, strictly linked to (7) and (8),
can be used to prove a variety of very deep estimates for S(t)u0, see for example [15, 45].
From (7) we immediately have the so called dispersive estimate

(9) ‖S(t)u0‖L∞ .
1
tn/2

‖u0‖L1 .

From (8) instead we have the conservation of the homogeneous Sobolev norms6

(10) ‖S(t)u0‖Ḣs = ‖u0‖Ḣs ,

for all s ∈ R. Interpolating (9) with (10) when s = 0 and using a so called TT ∗ argument
one can prove the famous Strichartz estimates summarized in the following theorem:

Theorem 3.4. [Strichartz Estimates in Rn] Fix n ≥ 1. We call a pair (q, r) of exponents
admissible if 2 ≤ q, r ≤ ∞, 2

q + n
r = n

2 and (q, r, n) 6= (2,∞, 2). Then for any admissible
exponents (q, r) and (q̃, r̃) we have the homogeneous Strichartz estimate

(11) ‖S(t)u0‖Lq
t Lr

x(R×Rn) . ‖u0‖L2
x(Rn)

and the inhomogeneous Strichartz estimate

(12)
∥∥∥∥∫ t

0
S(t− t′)F (t′) dt′

∥∥∥∥
Lq

t Lr
x(R×Rn)

. ‖F‖Lq̃′Lr̃′
x (R×Rn),

where 1
q̃ + 1

q̃′ = 1 and 1
r̃ + 1

r̃′ = 1.

See [30] and [47] for some concise proofs, and [15] for a complete list of authors who
contributed to the final version of this theorem.

6We will see later that the L2 norm is conserved also for the nonlinear problem (1).
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3.2. Strichartz estimates in Tn. In this section we will see how essential is the assump-
tion that Tn is a rational torus7 in order to be able to prove sharp Strichartz estimates. The
conjecture is that for irrational tori one should be able to prove similar estimates, if not
better in some cases, but for now the best available results are due to Bourgain in [9, 10].
In a sense irrational tori should generate some sort of weak dispersion since the reflections
of the wave solutions through periodic boundary conditions, with periods irrational with
respect to each other, should interact less in the nonlinearity. As for now there are no
results of this type in the literature.

Assume that ci > 0, i = 1, ...., n are the periods with respect to each coordinate. In the
periodic case one cannot expect the range of admissible pairs (q, r) as in Theorem 3.4. We
concentrate on the pairs q = r, that is q = 2(n+2)

n . There is the following conjecture:

Conjecture 3.1. Assume that Tn is a rational torus and the support of φ̂N is in the ball
BN (0) = {|n| . N}. Write

S(t)φN (x) =
∑

k∈Zn,|k|∼N

ake
i(〈x,k〉−γ(k)t),

where (ak) are the Fourier coefficients of φN and

(13) γ(k) =
n∑

i=1

cik
2
i .

If the torus is rational we can assume without loss of generality that ci ∈ N. Then

‖S(t)φN‖Lq
t Lq

x([0,1]×Tn) . Cq‖φN‖L2
x(Tn) if q <

2(n+ 2)
n

(14)

‖S(t)φN‖Lq
t Lq

x([0,1]×Tn) � N ε‖φN‖L2
x(Tn) if q =

2(n+ 2)
n

(15)

‖S(t)φN‖Lq
t Lq

x([0,1]×Tn) . CqN
n
2
−n+2

q ‖φN‖L2
x(Tn) if q <

2(n+ 2)
n

(16)

For a partial resolution of the conjecture see [4]. We present Bourgain’s argument for
n = 2, q = 4 below to show how the rationality of the torus comes into play.

Proof. In this proof we restrict further to the case when ci = 1 for i = 1, ..., n. Then∥∥∥∥∥∥
∑
|k|≤N

ane
i(〈x,k〉−|n|2t)

∥∥∥∥∥∥
4

L4([0,1]×T2)

=

∥∥∥∥∥∥
 ∑
|k|≤N

ake
i(〈x,k〉−|k|2t)

2∥∥∥∥∥∥
2

L2([0,1]×T2)

=
∑
k,m

|bk,m|2,

where
bk,m =

∑
k=k1+k2;m=|k1|2+|k2|2,|ki|≤N,i=1,2

ak1ak2

since  ∑
|k|≤N

ake
i(〈x,k〉−|n|2t)

2

=
∑

|n1|≤N,|n2|≤N

ak1ak2e
i(〈x,(k1+k2)〉−(|k1|2+|k2|2)t)

=
∑
k,m

bk,me
i(〈x,k〉+mt).

7For us a torus is irrational if there are at least two coordinates for which the ratio of their periods is
irrational.
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Now it is easy to see that

‖S(t)φN‖4
L4

t L4
x([0,1]×T2) ∼

∑
k,m

|bk,m|2(17)

. sup
|k|.N,|m|.N2

#M(k,m)‖(an)‖4
l2 ,

where

#M(k,m) = #{(k1 ∈ Z2 / 2m− |k|2 = |k − 2k1|2} = #{(z ∈ Z2 / 2m− |k|2 = |z|2}.
If 2m − |k|2 < 0 there are no points in M(k,m), and if R2 := 2m − |k|2 ≥ 0, there are at
most expC log R

log log R many points on the circle of radius R [26], and since R2 ≤ N2, using
(17) we obtain

(18) ‖S(t)φN‖L4
t L4

x([0,1]×T2) . N ε‖φN‖L2 ,

for all ε > 0. �

Remark 3.5. Thanks to a very precise translation invariance in the frequency space for
S(t)u, estimate (18) holds also when the support of φN is on a ball of radius N centered in
an arbitrary point z0 ∈ Z2.

In order to set up a fixed point theorem to prove well-posedness one defines Xs,b spaces,
introduced in this context by Bourgain [4]. The norms in these spaces are defined for
s, b ∈ R as:

‖u‖Xs,b(T2×R) :=
( ∑

n∈Z2

∫
R
|ũ(n, τ)|2〈n〉2s〈τ + |n|2〉2bdτ

) 1
2 ,

One can immediately see that these spaces are measuring the regularity of a function with
respect to certain parabolic coordinates, this to reflect the fact that linear Schrödinger
solutions live on parabolas. Having defined the spaces one wants to relate their norms to
certain Lq

tL
p
x norms that are typical of Strichartz estimates as proved above in a special

case. A key estimate, proved in [4], is

(19) ‖u‖L4
t,x

. ‖u‖
X0+, 12+ .

This is proved by viewing u as sum of components supported on paraboloids that are
at distance one from each other, using (18) on each of them and then reassembling the
estimates using the weight 〈τ + |n|2〉2b. An additional estimate is:

(20) ‖u‖L4
t,x

. ‖u‖
X

1
2+, 14+ .

The estimate (20) is a consequence of the following lemma [8].

Lemma 3.6. Suppose that Q is a ball in Z2 of radius N and center z0. Suppose that u
satisfies supp û ⊆ Q. Then

(21) ‖u‖L4
t,x

. N
1
2 ‖u‖

X0, 14+ .

Lemma 3.6 is proved in [8] by using Hausdorff-Young and Hölder’s inequalities. We omit
the details. We can now interpolate between (19) and (20) to deduce:

Lemma 3.7. Suppose that u is as in the assumptions of Lemma 3.6, and suppose that
b1, s1 ∈ R satisfy 1

4 < b1 <
1
2+, s1 > 1− 2b1. Then

(22) ‖u‖L4
t,x

. N s1‖u‖X0,b1 .



8 STAFFILANI

Lemma 3.7 can then be used to prove local well-posedness for the cubic NLS in T2 in
Hs, s > 0. One in fact can set up a fixed point argument in the space Xs,b, s > 0, b ∼ 1

2 .
The key point is that the problem at hand has a cubic nonlinearity which by duality forces
us to consider a product of four functions in L1. This translates into estimating L4 norms
which via (22) are related back to the space Xs,b. In the proof one shows that the interval
of time [−T, T ] suitable for a fixed point argument is such that

(23) T ∼ ‖u0‖−α
Hs ,

for some α > 0. As a consequence, the defocusing, cubic, periodic NLS problem (1) can be
proved to be globally well-posed in Hs, s ≥ 1 thanks to (23) and the conservation of the
Hamiltonian (2). See [4, 8].

4. Growth of Sobolev norms and energy transfer to high frequencies

We consider the cubic, defocusing, periodic (rational) NLS initial value problem:

(24)

{
iut + ∆u = |u|2u, x ∈ T2

u|t=0 = u0 ∈ Hs(T2), s > 1.

From Section 3 we know that (24) is globally well-posed in Hs, s ≥ 1. Hence, it makes sense
to analyze the behavior of ‖u(t)‖Hs . But as we will discuss later this estimate is related to
an important physical phenomenon: energy transfer to higher modes or forward cascade.
We will elaborate more on this below.

Theorem 4.1 (Bound for the defocusing cubic NLS on T2 [42, 51]). Let u be the global
solution of (24) on T2. Then, there exists a function C = Cs,‖u0‖H1

such that for all t ∈ R :

(25) ‖u(t)‖Hs(T2) ≤ C(1 + |t|)s+‖u0‖Hs(T2).

See also [8, 17].

Remark 4.2. Let us note that, if we consider the spatial domain to be R2, one can obtain
uniform bounds on ‖u(t)‖Hs for solutions u(t) of the defocusing cubic NLS by the recent
scattering and highly non trivial result of Dodson [23].

The growth of high Sobolev norms has a physical interpretation in the context of the
low-to-high frequency cascade. In other words, we see that ‖u(t)‖Hs weighs the higher
frequencies more as s becomes larger, and hence its growth gives us a quantitative estimate
for how much of the support of |û|2 has transferred from the low to the high frequencies.
This sort of problem also goes under the name of weak turbulence [1, 49]. By local well-
posedness theory discussed in Section 3, one can show that there exist C, τ0 > 0, depending
only on the initial data u0 such that for all t:

(26) ‖u(t+ τ0)‖Hs ≤ C‖u(t)‖Hs .

Iterating (26) yields the exponential bound:

(27) ‖u(t)‖Hs ≤ C1e
C2|t|,

where C1, C2 > 0 again depend only on u0.
For a wide class of nonlinear dispersive equations, the analogue of (27) can be improved

to a polynomial bound, as long as we take s ∈ N, or if we consider sufficiently smooth initial
data. This observation was first made in the work of Bourgain [7], and was continued in
the work of Staffilani [43, 44].
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The crucial step in the mentioned works was to improve the iteration bound (26) to:

(28) ‖u(t+ τ0)‖Hs ≤ ‖u(t)‖Hs + C‖u(t)‖1−r
Hs .

As before, C, τ0 > 0 depend only on u0. In this bound, r ∈ (0, 1) satisfies r ∼ 1
s . One can

show that (28) implies that for all t ∈ R:

(29) ‖u(t)‖Hs ≤ C(1 + |t|)
1
r .

In [7], (28) was obtained by using the Fourier multiplier method. In [43, 44], the iteration
bound was obtained by using multilinear estimates in Xs,b-spaces due to Kenig-Ponce-Vega
[31]. A slightly different approach, based on the analysis in the work of Burq-Gérard-
Tzvetkov [11], is used to obtain (28) in the context of compact Riemannian manifolds in
the work of Catoire-Wang [16], and Zhong [51].

The main idea in the proof of Theorem 4.1 in [42] is to introduce D, an upside-down
I-operator. This operator is defined as a Fourier multiplier operator. By construction, one
is able to relate ‖u(t)‖Hs to ‖Du(t)‖L2 and to consider the growth of the latter quantity.
Following the ideas of the construction of the standard I-operator, as defined by Collian-
der, Keel, Staffilani, Takaoka, and Tao [18, 19, 20], the goal is to show that the quantity
‖Du(t)‖2

L2 is slowly varying. This is done by applying a Littlewood-Paley decomposition
and summing an appropriate geometric series. A similar technique was applied in the
low-regularity context in [19]. This first step though is not enough to prove Theorem 4.1.
Instead one has to use higher modified energies, i.e. quantities obtained from ‖Du(t)‖2

L2

by adding an appropriate multilinear correction, again an idea introduced in [18, 19, 20].
In this way one obtains E2(u(t)) ∼ ‖Du(t)‖2

L2 , which is even more slowly varying. Due
to a complicated resonance phenomenon in two dimensions, the construction of E2 is very
involved and we do not present the details here.

4.1. Example of energy transfer to high frequencies. In this subsection we show that
a very weak growth of Sobolev norms may indeed occur. More precisely we can prove

Theorem 4.3. [Colliander-Keel-Staffilani-Takaoka-Tao, [22]] Let s > 1, K � 1 and 0 <
σ < 1 be given. Then there exist a global smooth solution u(x, t) to the IVP (24) and T > 0
such that

‖u0‖Hs ≤ σ and ‖u(T )‖2
Ḣs ≥ K.

We start by listing the elements of the proof. The first is a reduction to a resonant
problem that we will refer to as the RFNLS system, see (32). Then in Subsection 4.2
we introduce a special finite set Λ of frequencies and we reduce the RFNLS system to a
finite-dimensional Toy Model ODE system, see (33). We study this Toy Model dynamically
in Subsection 4.3 and we show some sort of “sliding property” for it, see Theorem 4.4. In
Subsection 4.4 we introduce the approximation Lemma 4.5 together with a scaling argument
and finally in Subsection 4.5 we sketch the proof of Theorem 4.3.

We consider the gauge transformation

v(t, x) = e−i2Gtu(t, x),

for G ∈ R. If u solves the NLS (24) above, then v solves the equation

(−i∂t + ∆)v = (2G+ v)|v|2.
We make the ansatz

v(t, x) =
∑
n∈Z2

an(t)ei(〈n,x〉+|n|2t).
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Now the dynamics is all recast trough an(t):

(30) i∂tan = 2Gan +
∑

n1−n2+n3=n

an1an2an3e
iω4t,

where ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2. By choosing

G = −‖v(t)‖2
L2 = −

∑
k

|ak(t)|2

which is constant from the conservation of the mass, one can rewrite equation (30) as

(31) i∂tan = −an|an|2 +
∑

n1,n2,n3∈Γ(n)

an1an2an3e
iω4t,

where
Γ(n) = {n1, n2, n3 ∈ Z2 / n1 − n2 + n3 = n;n1 6= n;n3 6= n}.

From now on we will be referring to this system as the FNLS system, with the obvious
connection with the original NLS equation.

We define the resonant set

Γres(n) = {n1, n2, n3 ∈ Γ(n) /ω4 = 0}.
The geometric interpretation for this set is as follows: If n1, n2, n3 are in Γres(n), then the
four points (n1, n2, n3, n) represent the vertices of a rectangle in Z2. We finally define the
resonant truncation RFNLS to be the system

(32) −i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)

bn1bn2bn3 .

We now would like to restrict the dynamics to a finite set of frequencies and this set would
need several important properties. The first one is closeness under resonance. A finite set
Λ ⊂ Z2 is closed under resonant interactions if

n1, n2, n3 ∈ Γres(n), n1, n2, n3 ∈ Λ =⇒ n = n1 − n2 + n3 ∈ Λ.

Hence a Λ-finite dimensional resonant truncation of RFNLS is

(33) −i∂tbn = −bn|bn|2 +
∑

(n1,n2,n3)∈Γres(n)∩Λ3

bn1bn2bn3 .

We will refer to this systems as the RFNLSΛ system.

4.2. Λ: a very special set of frequencies. We can construct a special Λ of frequencies
with the following properties [22]

• Generational set up: Λ = Λ1 ∪ · · · ∪ ΛN , N to be fixed later. A nuclear family
is a rectangle (n1, n2, n3, n4) where the frequencies n1, n3 (the ’parents’) live in
generation Λj and n2, n4 (’children’) live in generation Λj+1.

• Existence and uniqueness of spouse and children: ∀ 1 ≤ j < N and ∀ n1 ∈
Λj ∃ unique nuclear family such that n1, n3 ∈ Λj are parents and n2, n4 ∈ Λj+1 are
children.

• Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < N and ∀ n2 ∈
Λj+1 ∃ unique nuclear family such that n2, n4 ∈ Λj+1 are children and n1, n3 ∈ Λj

are parents.
• Non degeneracy: The sibling of a frequency is never its spouse.
• Faithfulness: Besides nuclear families, Λ contains no other rectangles.
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• Intergenerational Equality: The function n 7−→ an(0) is constant on each gen-
eration Λj .

• Multiplicative Structure: If N = N(σ,K) is large enough then Λ consists of
N×2N−1 disjoint frequencies n with |n| > R = R(σ,K), the first frequency in Λ1 is
of size R and we call R the inner radius of Λ. Moreover for any n ∈ Λ, |n| ≤ C(N)R.

• Wide Spreading: Given σ � 1 and K � 1, if N is large enough then Λ =
Λ1 ∪ .... ∪ ΛN as above and

(34)
∑

n∈ΛN

|n|2s ≥ K2

σ2

∑
n∈Λ1

|n|2s.

4.3. The Toy Model. The intergenerational equality hypothesis (that the function n 7−→
bn(0) is constant on each generation Λj) persists under RFNLSΛ (33):

∀ m,n ∈ Λj , bn(t) = bm(t).

Also RFNLSΛ may be reindexed by generation index j and the recast dynamics is the Toy
Model:

(35) −i∂tbj(t) = −bj(t)|bj(t)|2 − 2bj−1(t)2bj(t)− 2bj+1(t)2bj(t),

with boundary condition

(36) b0(t) = bN+1(t) = 0.

Using direct calculation8, we will prove9 that our Toy Model evolution bj(0) 7−→ bj(t) is
such that:

(b1(0), b2(0), . . . , bN (0)) ∼ (1, 0, . . . , 0)
(b1(t2), b2(t2), . . . , bN (t2)) ∼ (0, 1, . . . , 0)

.

(b1(tN ), b2(tN ), . . . , bN (tN )) ∼ (0, 0, . . . , 1)

that is the bulk of conserved mass is transferred from Λ1 to ΛN and the weak transfer of
energy from lower to higher frequencies follows from the Wide Spreading property (34) of
Λ listed above.

We now make few observations that are simple, but they are nevertheless meant to show
how nontrivial it is to move from Λ1 to ΛN . Global well-posedness for the Toy Model (35)
is not an issue. Then we define

Σ = {x ∈ CN / |x|2 = 1} and the flow map W (t) : Σ → Σ,

where W (t)b(t0) = b(t+ t0) for any solution b(t) of (35). It is easy to see that for any b(t)
with b(0) ∈ Σ

∂t|bj |2 = 4Re(ib̄j
2(b2j−1 + b2j+1)) ≤ 4|bj |2.

So if
bj(0) = 0 =⇒ bj(t) = 0, for all t ∈ [0, T ]

and if we define the torus

Tj = {(b1, ...., bN ) ∈ Σ / |bj | = 1, bk = 0, k 6= j}
then

W (t)Tj = Tj for all j = 1, ...., N

8Maybe dynamical systems methods are useful here?
9See Theorem 4.4.
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hence Tj is invariant. This suggests that if we want to move from a torus Tj to Ti we cannot
start from data on Tj and moreover we need to show that we can manage to avoid to hit
any Tk, j < k < i . This is in fact the content of the following instability-type theorem:

Theorem 4.4. [Sliding Theorem] Let N ≥ 6. Given ε > 0 there exist x3 within ε of T3

and xN−2 within ε of TN−2 and a time τ such that

W (τ)x3 = xN−2.

What the theorem says is that W (t)x3 is a solution of total mass 1 arbitrarily concen-
trated near mode j = 3 at some time 0 and then gets moved so that it is concentrated near
mode j = N − 2 at later time τ .

For the complete, and unfortunately lengthy proof of this theorem see [22]. Here we only
give a motivation for it that should clarify the dynamics involved. Let us first observe that
when N = 2 we can easily demonstrate that there is an orbit connecting T1 to T2. Indeed
in this case we have the explicit “slider” solution

(37) b1(t) :=
e−itω√
1 + e2

√
3t

; b2(t) :=
e−itω2√

1 + e−2
√

3t

where ω := e2πi/3 is a cube root of unity.
This solution approaches T1 exponentially fast as t → −∞, and approaches T2 expo-

nentially fast as t → +∞. One can translate this solution in the j parameter, and obtain
solutions that “slide” from Tj to Tj+1. Intuitively, the proof of the Sliding Theorem for
higher N should then proceed by concatenating these slider solutions....This though cannot
work directly because each solution requires an infinite amount of time to connect one hoop
to the next. It turned out though that a suitably perturbed or “fuzzy” version of these
slider solutions can in fact be glued together.

4.4. The Approximation lemma and the scaling argument. There are still two steps
we need to complete to prove Theorem 4.3. The first is to show that a solution to the Toy
Model (35) is a good approximation for the solution to the original problem (31). This is
accomplished with the following approximation lemma.

Lemma 4.5. [Approximation Lemma] Let Λ ⊂ Z2 introduced above. Let B � 1 and δ > 0
small and fixed. Let t ∈ [0, T ] and T ∼ B2 logB. Suppose there exists b(t) ∈ l1(Λ) solving
RFNLSΛ such that

(38) ‖b(t)‖l1 . B−1.

Then there exists a solution a(t) ∈ l1(Z2) of FNLS (31) such that for any t ∈ [0, T ]

a(0) = b(0), and ‖a(t)− b(t)‖l1(Z2) . B−1−δ.

The proof for this lemma is pretty standard. The main idea is to check that the “non
resonant” part of the nonlinearity remains small enough, see [22] for details.

The last ingredient before we proceed to the proof of our main result is the scaling
argument. What we proved so far is that we can find a solution of mass one that a time
zero is localized in Λ3 and if we wait long enough will be localized in ΛN−2. But what
Theorem 4.3 asks is a solution that is “small” at time zero. This is why we need to
introduce scaling. It is easy to check that if b(t) solves RFNLSΛ (33) then the rescaled
solution

bλ(t) = λ−1b(
t

λ2
)
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solves the same system with datum bλ0 = λ−1b0.
We then pick the complex vector b(0) that was found in the Sliding Theorem 4.4 above.

For simplicity let us assume here that bj(0) = 1− ε if j = 3 and bj(0) = ε if j 6= 3 and then
we fix

(39) an(0) =
{

bλj (0) for any n ∈ Λj

0 otherwise .

We are now ready to finish the proof of Theorem 4.3. For simplicity we recast it with all
the notations and reductions introduced so far:

Theorem 4.6. For any 0 < σ � 1 and K � 1 there exists a complex sequence (an) such
that ∑

n∈Z2

|an|2|n|2s

1/2

. σ

and a solution (an(t)) of FNLS and T > 0 such that∑
n∈Z2

|an(T )|2|n|2s

1/2

> K.

4.5. Proof of Theorem 4.6. We start by estimating the size of (an(0)). By definition(∑
n∈Λ

|an(0)|2|n|2s

)1/2

=
1
λ

 M∑
j=1

|bj(0)|2
∑

n∈Λj

|n|2s

1/2

∼ 1
λ
Q

1/2
3 ,

where the last equality follows from defining∑
n∈Λj

|n|2s = Qj ,

and the definition of an(0) given in (39). At this point we use the proprieties of the set Λ
to estimate Q3 ∼ C(N)R2s, where R is the inner radius of Λ. We then conclude that(∑

n∈Λ

|an(0)|2|n|2s

)1/2

= λ−1C(N)Rs ∼ σ,

for a large enough R.
Now we want to estimate the size of (an(T )). Take B = λ and T = λ2τ in Lemma 4.5

and write
‖a(T )‖Hs ≥ ‖bλ(T )‖Hs − ‖a(T )− bλ(T )‖Hs = I1 − I2.

We want I2 � 1 and I1 > K. For I2 we use the Approximation Lemma 4.5

I2 . λ−1−δ

(∑
n∈Λ

|n|2s

)1/2

. λ−1−δC(N)Rs.

At this point we need to pick λ and N so that

‖a(0)‖Hs = λ−1C(N)Rs ∼ σ and I2 . λ−1−δC(N)Rs � 1

and thanks to the presence of δ > 0 this can be achieved by taking λ and R large enough.
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Finally we estimating I1. It is important here that at time zero one starts with a fixed
non zero datum, namely ‖a(0)‖Hs = ‖bλ(0)‖Hs ∼ σ > 0. In fact we will show that

I2
1 = ‖bλ(T )‖2

Hs ≥
K2

σ2
‖bλ(0)‖2

Hs ∼ K2.

If we define for T = λ2t

R =
∑

n∈Λ |bλn(λ2t)|2|n|2s∑
n∈Λ |bλn(0)|2|n|2s

,

then we are reduce to showing that R & K2/σ2. Recall the notation

Λ = Λ1 ∪ ..... ∪ ΛN and
∑
n∈Λj

|n|2s = Qj .

Using the fact that by the Sliding Theorem 4.4 one obtains bj(T ) = 1 − ε if j = N − 2
and bj(T ) = ε if j 6= N − 2, it follows that

R =

∑N
i=1

∑
n∈Λi

|bλi (λ2t)|2|n|2s∑N
i=1

∑
n∈Λi

|bλi (0)|2|n|2s

≥ QN−2(1− ε)
(1− ε)Q3 + εQ1 + ....+ εQN

∼ QN−2(1− ε)

QN−2

[
(1− ε) Q3

QN−2
+ ....+ ε

]
&

(1− ε)
(1− ε) Q3

QN−2

=
QN−2

Q3

and the conclusion follows from the ”Wide Spreading” property (34) of Λj :

QN−2 =
∑

n∈ΛN−2

|n|2s &
K2

σ2

∑
n∈Λ3

|n|2s =
K2

σ2
Q3.

5. Periodic Schrödinger equations as infinite dimension Hamiltonian systems

In this section we are going to view some Schrödinger equations as infinite dimension
Hamiltonian systems. We will show two results generalizing to the infinite dimensional
setting two important concepts such as the invariance of the Gibbs measure and the non-
squeezing lemma of Gromov [24]. In the next subsection we recall these two concepts in
more details.

5.1. The finite dimension case. Hamilton’s equations of motion have the antisymmetric
form

(40) q̇i =
∂H(p, q)
∂pi

, ṗi = −∂H(p, q)
∂qi

the Hamiltonian H(p, q) being a first integral:

dH

dt
:=
∑

i

∂H

∂qi
q̇i +

∂H

∂pi
ṗi =

∑
i

∂H

∂qi

∂H

∂pi
+
∂H

∂pi
(−∂H

∂qi
) = 0.

By defining y := (q1, . . . , qk, p1, . . . , pk)T ∈ R2k (2k = d) we can rewrite (40) in the compact
form

dy

dt
= J∇H(y), J =

[
0 I
−I 0

]
.
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We now recall the following theorem giving a sufficient condition under which a flow map
preserves the volume:

Theorem 5.1. [Liouville’s Theorem] Let a vector field f : Rd → Rd be divergence free. If
the flow map Φt satisfies

d

dt
Φt(y) = f(Φt(y)),

then Φt is a volume preserving map for all t.

In particular if f is associated to a Hamiltonian system then automatically div f = 0.
As a consequence the Lebesgue measure on R2k is invariant under the Hamiltonian flow of
(40).

There are other measures that remain invariant10 under the Hamiltonian flow: the Gibbs
measures. In fact we have

Theorem 5.2. [Invariance of Gibbs measures] Assume that Φt is the flow generated by the
Hamiltonian system (40). Then the Gibbs measures

dµ := e−βH(p,q)
d∏

i=1

dpi dqi

with β > 0, are invariant under the flow Φt.

The proof is trivial since from conservation of the Hamiltonian H the functions e−βH(p,q)

remain constant, while, thanks to the Liouville’s Theorem 5.1 the volume
∏d

i=1 dpi dqi
remains invariant as well.

Next result, much more difficult to prove, is the non-squeezing theorem:

Theorem 5.3 (Non-squeezing [24]). Assume that Φt is the flow generated by the Hamil-
tonian system (40). Fix y0 ∈ R2k and let Br(y0) be the ball in R2k centered at y0 and radius
r. If CR(z0) := {y = (q1, . . . , qk, p1, . . . , pk) ∈ R2k/|qi − z0| ≤ R}, a cylinder of radius R,
and Φt(Br(y0)) ⊂ CR(z0), it must be that r ≤ R.

We now would like to see if Theorem 5.2 and Theorem 5.3 can be generalized to an
infinite dimensional setting.

5.2. Periodic Schrödinger equations and Gibbs measures. Let us go back to (1).
One can use H(u, ū) and check that equation (1) is equivalent to

u̇ = i
∂H(u, ū)

∂ū

whereH(t) is the Hamiltonian defined in (2), and one can think of u as the infinite dimension
vector given by its Fourier coefficients (û(k))k∈Zn = (ak, bk)k∈Zn .

Lebowitz, Rose and Speer [34] considered the Gibbs measure formally given by

(41) “dµ = Z−1 exp (−βH(u))
∏
x∈T

du(x)”

and showed that µ is a well-defined probability measure onHs(T) for any s < 1
2 , see Remark

5.6.
10A measure µ remains invariant under a flow Φt if for any A, subset of the support of µ, one has

µ(Φt(A)) = µ(A).
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Bourgain [5] proved the invariance of this measure and almost surely global well-
posedness of the associated initial value problem11. For example, for p = 4 in (1) he
proved:

Theorem 5.4. Consider the NLS initial value problem

(42)
{

(i∂t + ∆)u = λ|u|4u
u(0, x) = u0(x), where x ∈ T.

If λ = 1 (defocusing case) the measure µ (41) is well defined in Hs, 0 < s < 1/2 and
there exists Ω ⊂ Hs such that µ(Ω) = 1 and (42) is globally well-posed in Ω. Moreover
the measure µ is invariant under the flow given by (42). If λ = −1 (focusing case), then a
similar result holds for

dµ = Z−1χ{‖u‖2L≤B} exp (−βH(u))
∏
x∈T

du(x)

with B small enough.

Remark 5.5. If one considers the IVP (1) in the focusing case, then Theorem 5.4 only
holds for p ≤ 5, but if p < 5 we can take B > 0 arbitrary, see [5].

After Bourgain’s result recalled above, almost surely global well-posedness for a variety
of IVP has been studied by introducing invariant measures. See for example Burq and
Tzevtkov for subcubic and subquartic radial NLW on 3D balls [12, 13], T. Oh for the peri-
odic KdV-type and Schrödinger-Benjamin-Ono coupled systems [35, 36, 37], Oh-Nahmod-
Rey-Bellet-Staffilani [38] and Thomann and Tzevtkov [48] for the periodic derivative NLS
equation. This last one will be the subject of Subsection 5.5.

5.3. Gaussian measures and Gibbs measures. In this subsection I would like to elab-
orate a little more on Gaussian and Gibbs measures by using as an example the measure
that is naturally attached to the IVP (42) above. Note that the quantity

H(u) +
1
2

∫
|u|2(x) dx

is conserved. Then the best way to make sense of the Gibbs measure µ formally defined in
(41) is by writing it as

dµ = Z−1χ‖u‖L2≤B exp
(

1
6

∫
|u|6 dx

)
exp

(
−1

2

∫
(|ux|2 + |u|2) dx

)∏
x∈T

du(x).

In this expression

dρ = exp
(
−1

2

∫
(|ux|2 + |u|2) dx

)∏
x∈T

du(x)

is the Gaussian measure and
dµ

dρ
= χ‖u‖L2≤B exp

(
1
6

∫
|u|6 dx

)
,

corresponding to the nonlinear term of the Hamiltonian, is understood as the Radon-
Nikodym derivative of µ with respect to ρ.

11The remarkable fact is that this statement is true both in the focusing and defocusing case, modulo of
course the restriction on the L2 norm in Remark 5.5.
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The Gaussian measure ρ is defined as the weak limit of the finite dimensional Gaussian
measures

dρN = Z−1
0,N exp

(
− 1

2

∑
|n|≤N

(1 + |n|2)|ûn|2
) ∏
|n|≤N

dandbn .

For a precise definition of Gaussian measures on Hilbert and Banach spaces in general see
[25, 33]. Here we briefly recall how one shows that Sobolev spaces Hs(T) are supports for
ρ only if s < 1

2 . Consider the operator Js = (1−∆)s−1. Then∑
n

(1 + |n|2) |ûn|2 = 〈u, u〉H1 = 〈J −1
s u, u〉Hs .

The operator Js : Hs → Hs has the set of eigenvalues {(1 + |n|2)(s−1)}n∈Z and the corre-
sponding eigenvectors {(1 + |n|2)−s/2einx}n∈Z form an orthonormal basis of Hs. For ρ to
be countable additive we need Js to be of trace class which is true if and only if s < 1

2 .
Then ρ is a countably additive measure on Hs for any s < 1

2 . See again [25, 33].
The following remark is meant to explain the probabilistic aspect of Gibbs measures.

Remark 5.6. The measure ρN above can be regarded as the induced probability measure
on R4N+2 under the map

ω 7−→
{

gn(ω)√
1 + |n|2

}
|n|≤N

and ûn =
gn√

1 + |n|2
,

where {gn(ω)}|n|≤N are independent standard complex Gaussian random variables on a
probability space (Ω,F , P ).

In a similar manner, we can view ρ as the induced probability measure under the map

ω 7→

{
gn(ω)√
1 + |n|2

}
n∈Z

.

5.4. Bourgain’s Method. Above we stated Bourgain’s theorem for the quintic focusing
periodic NLS. Here we give an outline of Bourgain’s idea in a general framework, and
discuss how to prove almost surely global well-posedness and the invariance of a measure
starting with a local well-posedness result.

Consider a dispersive nonlinear Hamiltonian PDE with a k-linear nonlinearity, possibly
with derivative:

(43)

{
ut = Lu+N (u)
u|t=0 = u0,

where L is a (spatial) differential operator like i∂xx, ∂xxx, etc. Let H(u) denote the Hamil-
tonian of (43). Then (43) can also be written as

ut = J
dH

du
if u is real-valued, ut = J

∂H

∂u
if u is complex-valued,

for an appropriate operator J . Let µ denote a measure on the distributions on T, whose
invariance we would like to establish. We assume that µ is (formally) given by

“ dµ = Z−1e−F (u)
∏
x∈T

du(x) ”,
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where F (u) is conserved12 under the flow of (43) and the leading term of F (u) is quadratic
and nonnegative. Now, suppose that there is a good local well-posedness theory, that is
there exists a Banach space B of distributions on T and a space Xδ ⊂ C([−δ, δ];B) of space-
time distributions in which one proves local well-posedness by a fixed point argument with
a time of existence δ depending on ‖u0‖B, say δ ∼ ‖u0‖−α

B for some α > 0. In addition,
suppose that the Dirichlet projections PN – the projection onto the spatial frequencies
≤ N – act boundedly on these spaces, uniformly in N . Then for ‖u0‖B ≤ K the finite
dimensional approximation to (43)

(44)

{
uN

t = LuN + PN

(
N (uN )

)
uN |t=0 = uN

0 := PNu0(x) =
∑

|n|≤N û0(n)einx.

is locally well-posed on [−δ, δ] with δ ∼ K−α, independent of N . We need two more
important assumptions on (44): that (44) is Hamiltonian with H(uN ) i.e.

(45) uN
t = J

dH(uN )
duN

and that

(46)
d

dt
F (uN (t)) = 0,

that is F (uN ) is still conserved under the flow of (44).
Note that the first holds for example when J commutes with the projection PN , (e.g.

J = i or ∂x.). In general however the two assumptions above are not guaranteed and may
not necessarily hold. See Subsection 5.5.

At this point we have:
• By Liouville’s theorem and (45) the Lebesgue measure

∏
|n|≤N dandbn, where

ûN (n) = an + ibn, is invariant under the flow of (44).
• Using (46) - the conservation of F (uN )- the finite dimensional version µN of µ:

dµN = Z−1
N e−F (uN )

∏
|n|≤N

dandbn

is also invariant under the flow of (44).
The next ingredient we need is:

Lemma 5.7 (Fernique-type tail estimate). For K sufficiently large, we have

µN

(
{‖uN

0 ‖B > K}) < Ce−CK2
,

where all constants are independent of N .

This lemma and the invariance of µN imply the following estimate controlling the growth
of the solution uN to (44) [5].

Proposition 5.8. Given T < ∞, ε > 0, there exists ΩN ⊂ B such that µN (Ωc
N ) < ε and

for uN
0 ∈ ΩN , (44) is well-posed on [−T, T ] with the growth estimate:

‖uN (t)‖B .
(

log
T

ε

) 1
2
, for |t| ≤ T.

12F (u) could be the Hamiltonian, but not necessarily!
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Proof. Let ΦN (t) be the flow map of (44), and define

ΩN = ∩[T/δ]
j=−[T/δ]ΦN (jδ)({‖uN

0 ‖B ≤ K}).

By invariance of µN ,

µ(Ωc
N ) =

[T/δ]∑
j=−[T/δ]

µN

(
ΦN (jδ)({‖uN

0 ‖B > K}
)

= 2[T/δ]µN ({‖uN
0 ‖B > K})

This implies µ(Ωc
N ) . T

δ µN ({‖uN
0 ‖B > K}) ∼ TKθe−cK2

, and by choosing K ∼
(
log T

ε

) 1
2 ,

we have µ(Ωc
N ) < ε. By its construction, ‖uN (jδ)‖B ≤ K for j = 0, · · · ,±[T/δ] and by

local theory,

‖uN (t)‖B ≤ 2K ∼
(

log
T

ε

) 1
2 for |t| ≤ T.

�

One then needs to prove that µN converges weakly to µ. This is standard and one can
check the work of Zhidkov [50] for example. Going back to (43), essentially as a corollary
of Proposition 5.8 one can then prove:

Corollary 5.9. Given ε > 0, there exists Ωε ⊂ B with µ(Ωc
ε) < ε such that for u0 ∈ Ωε,

the IVP (43) is globally well-posed and
(a) ‖u− uN‖C([−T,T ];B′) → 0 as N →∞ uniformly for u0 ∈ Ωε, where B′ ⊃ B.
(b) One has the growth estimate

‖u(t)‖B .

(
log

1 + |t|
ε

) 1
2

, for all t ∈ R.

One can prove (a) and (b) by estimating the difference u − uN using the local well-
posedness theory and a standard approximation lemma, and then applying Proposition
5.8 to uN . Finally if Ω :=

⋃
ε>0 Ωε, clearly µ(Ω) = 1 and (43) is almost surely globally

well-posed. At the same time one also obtains the invariance of µ.

5.5. The periodic, one dimensional derivative Schrödinger equation. It is now
time to introduce another infinite dimensional system: the derivative NLS equation (DNLS)

(47)

{
ut − i uxx = λ(|u|2u)x,

u
∣∣
t=0

= u0,

where (x, t) ∈ T × (−T, T ) and λ is real. Below we will take λ = 1 for convenience. We
note that DNLS is an Hamiltonian PDE. In fact, it is completely integrable [28]. The first
three conserved integrals are:

Mass: m(u) =
1
2π

∫
T
|u(x, t)|2 dx

‘Energy’: E(u) =
∫

T
|ux|2 dx+

3
2
Im
∫

T
u2uux dx+

1
2

∫
T
|u|6 dx =:

∫
T
|ux|2 dx+K(u)(48)

Hamiltonian: H(u) = Im
∫

T
uux dx+

1
2

∫
T
|u|4 dx.

We would like now to explore the possibility of extending Bourgain’s approach to the
periodic DNLS (47). We should immediately say that Thomann and Tzvetkov [48] already
proposed a measure for this problem. Unfortunately though the presence of the derivative
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term in the nonlinearity, in particular |u|2ux, makes it impossible to prove the needed
multilinear estimates of the type presented in Section 3, that are the fundamental tools to
show both invariance and almost surely global well-posedness. For this reason one needs
to remove the term |u|2ux by gauging via the transformation [28, 46]

(49) G(f)(x) := exp(−iJ(f)) f(x)

where

(50) J(f)(x) :=
1
2π

∫ 2π

0

∫ x

θ

(
|f(y)|2 − 1

2π
‖f‖2

L2(T)

)
dy dθ

is the unique 2π-periodic mean zero primitive of the map

x −→ |f(x)|2 − 1
2π
‖f‖2

L2(T).

Then, for u ∈ C([−T, T ];L2(T)) the adapted periodic gauge is defined as

G(u)(t, x) := G(u(t))(x− 2 tm(u)).

Note that the difference between G and G is a space translation by 2 tm(u) and this is
introduced simply to remove an extra linear term that would have appeared in the gauged
equation if one had only used G. We have that

G : C([−T, T ];Hσ(T)) → C([−T, T ];Hσ(T))

is a homeomorphism for any σ ≥ 0. Moreover, G is locally bi-Lipschitz on subsets of
functions in C([−T, T ];Hσ(T)) with prescribed L2-norm. The same is true if we replace
Hσ(T) by FLs,r, the Fourier-Lebesgue spaces defined in (55) below. If u is a solution to
(47) then v := G(u) is a solution to the gauged DNLS initial value problem, here denoted
GDNLS:

(51) vt − ivxx = −v2vx +
i

2
|v|4v − iψ(v)v − im(v)|v|2v

with initial data v(0) = G(u(0)), where

ψ(v)(t) := − 1
π

∫
T

Im(vvx) dx +
1
4π

∫
T
|v|4dx−m(v)2

and

m(u) = m(v) :=
1
2π

∫
T
|v|2(x, t)dx =

1
2π

∫
T
|v(x, 0)|2(x)dx

is the conserved mass. One can also check that if

E(v) :=
∫

T
|vx|2 dx−

1
2
Im
∫

T
v2v vx dx+

1
4π

(∫
T
|v(t)|2 dx

)(∫
T
|v(t)|4 dx

)
,

H(v) := Im
∫

T
vvx −

1
2

∫
T
|v|4 dx+ 2πm(v)2

and

(52) Ẽ(v) := E(v) + 2m(v)H(v)− 2πm(v)3

then all are conserved integrals. For convenience let us write

(53) Ẽ(v) =
∫

T
|vx|2 dx+N (v),
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where N (v) represents the part of the energy that comes from the nonlinearity. We now
define, at least formally the measure µ as

(54) “dµ = Z−1χ{‖v‖L2<B}e
N (v)dρ ”,

where the cut-off function with respect to the L2 norm is suggested by Remark 5.5 and
the fact that equation (51) has a quintic term in it. The plan is then is to show that for
B small this measure is well defined and invariant for the GDNLS, that GDNLS is almost
surely global well-posedness with respect to it and finally that one can un-gauge to go back
to the DNLS (47). Unfortunately there are several obstacles that one needs to overcome
to implement this plan. The first is that (51) is ill posed13 in Hs, s < 1

2 , see [3]. On the
other hand Grünrock-Herr [27] proved local well-posedness for initial data v0 ∈ FLs,r(T)
and 2 ≤ r < 4, s ≥ 1

2 , where

(55) ‖v0‖FLs,r(T) := ‖ 〈n 〉s v̂0 ‖`r
n
(Z) r ≥ 2,

avoiding in this way L2 based Sobolev spaces. These spaces scale like the Sobolev spaces
Hσ(T), where σ = s+ 1/r − 1/2. For example for s = 2

3− and r = 3 one has that σ < 1
2 .

As a result one can use Gaussian measures on Banach spaces 14 FLs,r(T). The next issue
is the fact that when one projects (51) via PN the resulting IVP

(56) vN
t = ivN

xx − PN ((vN )2vN
x ) +

i

2
PN (|vN |4vN )− iψ(vN )vN − im(vN )PN (|vN |2vN )

with initial data vN
0 = PN v0 is no longer in an Hamiltonian form that one can recognize and

one needs to prove Liouville’s theorem by hands. The final, and probably the most serious
problem is that the energy Ẽ(v) in (53), that is conserved for (51), is no longer conserved
when one projects via PN . Fortunately though Bourgain’s argument can be made more
general, in particular it is enough to show that Ẽ(vN ) is almost conserved. At the end one
can show

Theorem 5.10. [Almost sure global well-posedness of GDNLS (51) and invariance]
The measure µ in (54) is well defined on FL

2
3
−,3(T). Moreover there exists Ω ⊂

FL
2
3
−,3(T), µ(Ωc) = 0 such that GDNLS (51) is globally well-posed in Ω and µ is invariant

on Ω.

The last step, a pretty straightforward one, is going back to the un-gauged equation
DNLS (47) by pulling back the gauge, that is by defining ν := µ◦G and in so doing obtaining
a theorem like Theorem 5.10 for the initial value problem DNLS (47) and the measure ν,
see [38] for details. Now the interesting question is to understand what ν = µ ◦ G really
represents. Is ν absolutely continuous with respect to the measure that can be naturally
constructed for DNLS by using its energy E in (48), as done by Thomann-Tzevtkov [48]?

When we un-gauge the measure µ, at least formally we are un-gauging two pieces, the
Radon-Nikodym derivative and the Gaussian measure. Treating the Radon-Nikodym deriv-
ative is easy. The problem is un-gauging the Gaussian measure ρ. We can ask the following
question: What is ρ̃ := ρ ◦G? Is (its restriction to a sufficiently small ball in L2) absolutely
continuous with respect to ρ? If so, what is its Radon-Nikodym derivative?

13The ill-posedness result has actually been proved only in R so far and it says that a fixed point argument
cannot be used in Sobolev spaces based L2. It is believed that this negative result is also true in the periodic
case.

14For this reason at the end of the day one will be talking about weighted Wiener measures instead of
Gibbs measures, see [38] for more details.
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5.6. Gaussian measures and gauge transformations. In order to finish this step one
should stop thinking about the solution v as a infinite dimension vector of Fourier modes
and instead start thinking about v as a (periodic with period 1) complex Brownian path in
T (Brownian bridge) solving a certain stochastic process. The argument that follows can
be found in full details in [40].

We notice from (49) that to un-gauge we need to use

G−1(v)(x) = exp(iJ(v)) v(x)

where J(v)(x) was defined in (50). It will be important later that J(v)(x) = J(|v|)(x).
Then, if v satisfies

dv(x) = dB(x)︸ ︷︷ ︸
Brownian motion

+ b(x)dx︸ ︷︷ ︸
drift terms

by Ito’s calculus and since exp(iJ(v)) is differentiable we have:

dG−1v(x) = exp(iJ(v)) dv + iv exp(iJ(v))
(
|v(x)|2 − 1

2π
‖v‖2

L2

)
dx+ . . . .

Substituting above one has

dG−1v(x) = exp(iJ(v)) [dB(x) + a(v, x, ω)) dx] + . . .

where

(57) a(v, x, ω) = iv

(
|v(x)|2 − 1

2π
‖v‖2

L2

)
.

What could help? Certainly the fact that exp(iJ(v)) is a unitary operator and that one
can prove Novikov’s condition:

(58) E

[
exp

(
1
2

∫
a2(v, x, ω)dx

)]
<∞.

In fact this last condition looks exactly like what we need for the following theorem:

Theorem 5.11 (Girsanov [39]). If we change the drift coefficient of a given Ito process in
an appropriate way, see (57), then the law of the process will not change dramatically. In
fact the new process law will be absolutely continuous with respect to the law of the original
process and we can compute explicitly the Radon-Nikodym derivative.

Unfortunately though Girsanov’s theorem doesn’t save the day.... at least not immedi-
ately. If one reads the theorem carefully one realizes that an important condition is that
a(v, x, ω) is non anticipative, in the sense that it only depends on the BM v up to “time” x
and not further. This unfortunately is not true in our case. The new drift term a(v, x, ω)
involves the L2 norm of v(x), see (57), and hence it is anticipative. A different strategy is
needed and conformal invariance of complex BM comes to the rescue

We use the well known fact that if W (t) = W1(t)+iW2(t) is a complex Brownian motion,
and if φ is an analytic function then Z = φ(W ) is, after a suitable time change, again a
complex Brownian motion15, [39]. For Z(t) = exp(W (s)) the time change is given by

t = t(s) =
∫ s

0
|eW (r)|2dr, s(t) =

∫ t

0

dr

|Z(r)|2
.

15In what follows one should think of Z(t) to play the role of our complex BM v(x).



DISPERSIVE EQUATIONS AND THEIR ROLE BEYOND PDE 23

We are interested on Z(t) for the interval 0 ≤ t ≤ 1 and thus we introduce the stopping
time

S = inf
{
s ;
∫ s

0
|eW (r)|2dr = 1

}
and remark the important fact that the stopping time S depends only on the real partW1(s)
of W (s) (or equivalently only |Z|). If we write Z(t) in polar coordinate Z(t) = |Z(t)|eiΘ(t),
we have

W (s) = W1(s) + iW2(s) = log |Z(t(s)|+ iΘ(t(s))
and W1 and W2 are real independent Brownian motions. If we define

W̃ (s) := W1(s) + i

[
W2(s) +

∫ t(s)

0
h(|Z|)(r)dr

]
= W1(s) + i

[
W2(s) +

∫ t(s)

0
h(eW1)(r)dr,

]
then have

eW̃ (s) = Z̃(t(s)) = G−1(Z)(t(s)).
In terms of W , the gauge transformation is now easy to understand: it gives a complex
process in which the real part is left unchanged and the imaginary part is translated by
the function J(Z)(t(s)) in (50) which depends only on the real part (i.e. on |Z|, which
has been fixed) and in that sense is deterministic. It is now possible to use the Cameron-
Martin-Girsanov’s Theorem [14, 39] only for the law of the imaginary part and conclude
the proof. Then if η denotes the probability distribution of W and η̃ the distribution of W̃
we have the absolute continuity of η̃ and η whence the absolute continuity between ρ̃ and
ρ follows with the same Radon-Nikodym derivative (re-expressed back in terms of t). All
in all then we prove that our un-gauged measure ν is in fact essentially (up to normalizing
constants) of the form

dν(u) = χ‖u‖L2≤Be
−K(u)dρ,

where K(u) was introduced in (48), that is the weighted Wiener measure associated to
DNLS (constructed by Thomann-Tzvetkov [48]). In particular we prove its invariance.

Remark 5.12. The sketch of the argument above needs to be done carefully for complex
Brownian bridges (periodic BM) by conditioning properly. See [40].

5.7. Periodic dispersive equations and the non-squeezing theorem. In Theorem 5.3
we recalled like a finite dimensional Hamiltonian flow Φt cannot squeeze a ball into a cylinder
with a smaller radius. Generalizing this kind of result in infinite dimensions has been a
long project of Kuksin [32] who proved, roughly speaking, that compact perturbations of
certain linear dispersive equations do indeed satisfy the non-squeezing theorem. It is easy
to show that the L2 space equipped with the form

(59) ω(f, g) = 〈if, g〉L2

is a symplectic space for the cubic, defocusing NLS equation on T and its global flow Φ(t)
is a symplectomorphism. One can show that this setting does not satisfy the conditions in
[32]. Nevertheless Bourgain proved the following theorem:

Theorem 5.13. [Non-squeezing [5]] Assume that Φt is the flow generated by the cubic,
periodic, defocusing NLS equation in L2. If we identify L2 with l2 via Fourier transform
and we let Br(y0) be the ball in l2 centered at y0 ∈ l2 and radius r, CR(z0) := {(an) ∈
l2/|ai − z0| ≤ R} a cylinder of radius R and Φt(Br(y0)) ⊂ CR(z0), at some time t, then it
must be that r ≤ R.
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The proof of this theorem is based on projecting the IVP onto finitely many frequencies
via the projection operator PN as was done in (44). In this case the new projected problem
is a finite dimensional Hamiltonian system and Gromov’s Theorem 5.3 can be applied.
The difficult part then is to show that the flow ΦN (t) of the projected IVP approximates
well the flow Φ(t) of the original problem. In this case this can be done thanks to strong
multilinear estimates based on the Strichartz estimates recalled in Theorem 18; see [5] for
the complete proof. We should mention here that unfortunately Bourgain’s argument may
not work for other kinds of dispersive equations. For example in [21], where the KdV
problem was studied, the lemma in Bourgain’s work that gives the good approximation of
the flow Φ(t) by ΦN (t) does not hold. This has to do with the number of interacting waves
in the nonlinearity. There it was proved that still the non-squeezing theorem holds, but the
proof was indirect and it had to go through the Miura transformation.
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How does quantum mechanics scale?

Umesh Vazirani∗

Abstract

The quantum description of a system of n spins requires 2n complex num-

bers. For n = 500 this dwarves estimates for the number of particles in the

Universe. This simple observation lies at the heart of the extravagant com-

puting power of quantum computers. It also presents a fundamental obstacle

to simulating or ”solving” general quantum many body system.

Is it even possible in principle to experimentally verify this exponential

scaling? And do quantum states that occur in Nature exhibit this exponential

complexity? We discuss recent progress on complexity theoretic formulations

of these questions.

1 Introduction

The fundamental lesson that quantum computation teaches is that quantum systems

are exponentially complex. The classical description of a general state of an n

particle quantum system scales exponentially in n, a phenomenon responsible for

the violation by quantum computers of the extended Church-Turing thesis [8, 14],

and the remarkable power of quantum algorithms [13]. Indeed, this is among the

most counter-intuitive predictions of quantum mechanics, and was missed for a

good fraction of a century after the birth of quantum mechanics in the early 1900s.

But has this exponential scaling been experimentally tested? Whereas quantum

mechanics has been extensively scrutinized and experimentally tested to an exquisite

degree of accuracy (some predictions in QED have been verified to better than one

part in 1012), it can be argued that these are low complexity quantum mechanics.

The complexity measure here is the effective dimension of the Hilbert space in which

the state of the system lives. One of the goals of physics research is to test the limits

of validity of a theory — in the limit of high energy or at the Planck scale or the

speed of light. All this suggests that there is a new regime in which to test quantum

mechanics, the limit of high complexity [15].

∗Department of Computer Science, UC Berkeley
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At a more foundational level, is it even possible in principle to experimentally

verify this exponential scaling? The difficulty in doing so is that the exponential

scaling presents a fundamental obstacle to solving or simulating a general quantum

many body system, and therefore to predicting the outcome to an experiment as a

prelude to experimental verification. In other words, there appears to be a tension

between the exponential complexity of quantum systems and the standard scientific

paradigm of ”predict and verify”. Nevertheless, Shor’s quantum factoring algorithm

can be used as the basis of a physical experiment that tests quantum mechanics in

this regime. Even though the outputs of the experiment, the prime factors of the

input N , are hard to compute assuming the intractability of factoring on a classical

computer, the experiment can be validated by checking that the product of the

prime factors is indeed N . i.e. by checking a certain consistency condition on the

output.

This consistency checking approach can be greatly generalized by appealing to

the complexity theoretic framework of interactive proof systems [4]. In an interac-

tive proof system, a computationally weak (polynomial time) verifier, Arthur, can

interact with a much more powerful but untrusted prover, Merlin, and determine

the correctness of an a claimed answer to a computational problem. For this to be

possible, Merlin has to be willing to answer a number of cleverly chosen random

questions related to the original claim. Arthur adaptively generates this sequence

of questions based on Merlin’s answers, and checks Merlin’s answers for consistency.

The remarkable property of such protocols is that Arthur can only be convinced of

the original claim (with non-negligible probability over the choice of questions) if

it is in fact a valid claim. Arthur’s confidence in the claim does not depend in any

way on his trust in Merlin, but rather in the consistency checks that he is able to

perform on Merlin’s answers. The complexity class of assertions that a polynomial

time bounded Arthur can verify in this way is denoted by IP . The class IP general-

izes the complexity class NP by allowing both randomness and interaction with the

prover. A remarkable result in complexity theory asserts that IP = PSPACE [7].

i.e. a prover who can solve any problem in PSPACE can convince a polynomial

time verifier about the correctness of any instance of a problem in PSPACE.

Denote by QPIP the class of assertions that a polynomial time bounded Arthur

can verify when the prover is restricted to quantum polynomial time (BQP ).

Clearly QPIP ⊆ BQP . The question of interest in the context of experimen-

tally verifying quantum mechanics is whether BQP ⊆ QPIP . A positive answer

to this question could be interpreted as follows: a (classical) experimentalist wishes

to check that the outcome of a particular experiment is consistent with the predic-

tions of quantum mechanics. Unfortunately he cannot theoretically calculate the

2



outcome predicted by quantum mechanics. Instead, he carries out a sequence of

interactive experiments with the quantum system. If the outcomes of all these ex-

periments jointly satisfy the consistency checks (specified by the interactive proof

system), the experimentalist concludes that the outcome of the original experiment

was indeed consistent with the predictions of quantum mechanics. Moreover, his

confidence in this conclusion is based only on the outcome of the consistency tests,

which he can carry out efficiently. Of course, if the outcomes of the experiments did

not pass the consistency tests, then the experimentalist could only conclude that at

least one of the experiments failed to meet the predictions of quantum mechanics.

Whether or not BQP ⊆ QPIP is currently an open question. Indeed, this

is one of the most important computational questions about the foundations of

quantum mechanics. A closely related result was proved Aharonov, Ben-Or and

Eban [4]. They considered the situation where Arthur is not purely classical, but

can store and manipulate a constant number (3 to be concrete) of qubits, and can

exchange qubits with Merlin, who is restricted to quantum polynomial time (BQP ).

Denote by QPIP ∗ the class of assertions that Arthur can verify in this setting. Then

QPIP ∗ = BQP . One way to understand this protocol is to imagine that a company

QWave claims to have experimentally realized a quantum computer, and wishes to

convince a potential buyer that the computer is indeed capable of performing an

arbitrary quantum computation on up to n qubits. If the potential buyer has the

capability of storing and manipulating 3 qubits, and of exchanging qubits with the

quantum computer, then by following the above protocol, he can verify that the

computer faithfully carried out any quantum computation of his choice.

One might wonder whether quantum states that occur in Nature are low com-

plexity states. i.e. states with classical descriptions that scale polynomially in

n, the number of particles in the quantum system. The exponential complexity

of quantum states is directly related to the phenomena of entanglement, which is

the fundamental obstacle in the quest to simulate quantum systems on a classical

computer. Ground states of quantum many body systems on a lattice, which are

ubiquitous in condensed matter physics, provide a natural setting to explore the

complexity of quantum states that occur in Nature.

A remarkable conjecture in condensed matter physics dating back about a half

century is the Area Law, which strongly bounds the entanglement in ground states

of gapped local Hamiltonians (for a survey see [9]). Consider the interaction graph

(hypergraph) associated with a local Hamiltonian on a D-dimensional grid. It has

a vertex for each particle and an edge for each term of the Hamiltonian. Intuitively

and very roughly, an area law says that entanglement is local in this interaction

graph in the following sense: for any contiguous region L in the grid, the entangle-

3



Figure 1: A quantum many-body system on a grid: the grid points represent par-

ticles, and the edges represent 2-body interactions. The area law asserts that the

entanglement entropy between the particles inside the region L and the particles

outside of it is proportional to the surface area of L.

ment between the particles inside L and the particles outside L is mostly due to the

local degrees of freedom along the edges that connect these subsets. More precisely,

for any region L, let L denote its complement. Then a state |ψ〉 obeys an area

law if the entanglement entropy between L and L is upper-bounded by the order of

the number of edges that connect L and L, which is proportional to the boundary

(surface area) of L. This is clearly a much stronger bound on the entropy than

the trivial bound (known as a volume law), which is proportional to the number of

particles (nodes) inside L.

In a seminal paper [11], Hastings proved that ground states of gapped 1D sys-

tems obey an area law. For 1D systems the area law asserts that ground state

entanglement entropy across any contiguous cut is bounded by a constant, inde-

pendent of the system size. Specifically, for a nearest neighbor system on a line,

H =
∑n−1
i=1 Hi, with particle dimension d, interaction strength ‖Hi‖ ≤ J and a

spectral gap ε > 0, the theorem states that entanglement entropy across any cut in

the chain is upper bounded by S ≤ eO(X) for X
def
= J log d

ε .

Hastings’ result implies that ground states of gapped 1D systems can be well-

approximated by states that admit a classical description of a polynomial size

(MPS). This can in turn be used to approximate any local observable efficiently

4



on a classical computer. From a complexity-theoretic point of view it tells us that

the local Hamiltonian problem for such 1D systems with a constant spectral gap

belongs to the complexity class NP.

Two major issues remained opened following Hastings’ paper. The first is an

extension of his results to 2 and 3 dimensional systems. The second is the depen-

dence of the bound on X. Hastings shows that S scales exponentially in X, whereas

the best lower bounds come from specially crafted 1D Hamiltonians [12, 10], scale

as ε−1/4. This is important for two reasons: the dependence on ε determines how

close to the critical point (ε = 0) the ground state admits a polynomial size MPS.

At the same time, improving the dependence on log d provides a possible path to-

wards proving an area law in higher dimensions. Indeed, a bound on S that scales

as O(log d) would imply higher dimensional area laws by the naive reduction from

a D-dimensional system to a 1-D system by fusing together particles on surfaces

parallel to the boundary.

A completely new and more combinatorial approach to proving the area law was

developed in a sequence of papers [2, 3], culminating in a proof by Arad, Landau and

Vazirani [6] of a polynomial bound of O(X3 log8X) on the entanglement entropy

for 1D frustration free systems. Since log d is a trivial lower bound, and it is known

that there are frustration free systems in which the entanglement entropy grows as

ε−1/4 [10], this bound is tight to within a polynomial factor.

In addition to providing a polynomially optimal upper bound on the 1D entan-

glement entropy, these results have some relevance in the context of area laws in

higher dimensions. A naive application of the improved bound to higher dimen-

sional systems would yield an entropy bound of S ≤ |∂L|3poly(log |∂L|), which is

still worse than a volume law. However, in 2 or more dimensions, one can further

exploit the local properties of the system along the boundary ∂L, and improve the

bound to |∂L|2 · poly(log |∂L|). This bound is at the cusp of being non-trivial;

any further improvement that would bound the entropy by |∂L|2−δ for any δ > 0,

would prove a sub-volume law for 2D systems. Proving the area law for 2D and

higher dimensional systems is one of the most important open questions in quantum

Hamiltonian complexity.

2 Entanglement Measures:

Entanglement, the feature that a portion of a quantum system cannot be com-

pletely described without access to the whole system, is fundamental to quan-

tum mechanics. Given a state |φ〉 and a bipartition of the system to two non

intersecting sets, R and L, with corresponding Hilbert spaces HL,HR such that
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H = HL ⊗HR, we can consider the Schmidt decomposition of the state along this

cut: |φ〉 =
∑
j λj |Lj〉 ⊗ |Rj〉. Here λ1 ≥ λ2 ≥ . . . are the Schmidt coefficients. It

turns out that if we add the constraint that the sets {|Lj〉} and {|Rj〉} are each

orthonormal sets and that the λj ≥ 0 then such a decomposition can always be

done and this decomposition is essentially unique. The collection of coefficients λj

in the Schmidt decomposition serve to describe the entanglement of |φ〉 between R

and L.

One straightforward measure of entanglement refers to the minimum number of

non-zero terms needed in a decomposition of the type described above. It turns out

that the Schmidt decomposition achieves this minimum, and this number, i.e. the

number of non-zero λj in the Schmidt decomposition, is referred to as the Schmidt

rank (SR). The usefulness of the SR stems from it being a “worst case” estimate for

the entanglement. As such, it is often easy to bound. The following facts are easy

to verify:

The following facts are easy to verify:

Fact 2.1

1. If O is a k-local operator whose support intersects both HL and HR, then it

can increase the SR (with respect to the bi-partitioning) of any state by at

most a factor of dk: SR(Oφ) ≤ dkSR(φ). If O intersects only one part of the

system, its action cannot increase the SR.

2. Consider a 1D system. If ri and rj are the SR of |φ〉 that correspond to cuts

between particles i, i+ 1, and j, j + 1, then ri ≤ d|i−j|rj.

An important fact about the SR is the following corollary of the Eckart-Young

theorem [16], which states that the truncated Schmidt decomposition provides the

best approximation to a vector in the following sense:

Fact 2.2 Let |ψ〉 be a vector on a bi-partitioned Hilbert space HL ⊗ HR, and let

λ1 ≥ λ2 ≥ . . . be its corresponding Schmidt coefficients. Then the largest inner

product between |ψ〉 and a normalized vector with Schmidt rank r is
√∑r

j=1 λ
2
j .

Entanglement entropy is a more refined quantitative measure of entanglement

between two pieces of a quantum system; it is defined to be the classical entropy of

the squares of the Schmidt coefficients {λ2j}, i.e.
∑
j λ

2
j log( 1

λ2
j

). An alternate and

perhaps more revealing definition is as follows: form the reduced density matrix

ρL = trR(|ψ〉〈ψ|) of |ψ〉 on L. We can think of ρL as a probabilistic mixture of

the eigenstates of ρL with the probability of a given eigenstate being its eigenvalue.

With this description, a natural quantification of entanglement is the classical en-

tropy of this probability distribution, i.e. the classical entropy of the eigenvalues of
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ρL. Indeed this quantity is also the entanglement entropy as the the squares of the

Schmidt coefficients {λ2j} coincide with the set of eigenvalues ρL.

3 1D Area Law:

Let |Ω〉 be the ground state of a frustration-free, nearest neighbor Hamiltonian

system H =
∑n
i=1Hi on a 1D chain of n particles of dimension d. Assume that

the system has spectral gap ε > 0, and an interaction strength ‖Hi‖ ≤ J . For the

sake of simplicity, we assume that Hi are projections, and therefore Pi
def
= 1 − Hi

are projections to the local ground spaces of the different terms.

Let L be the set of particles 1 through i, and let R be the set of the remaining

particles. Then the 1D area law asserts that the entanglement entropy of |Ω〉 across

every cut i, i+ 1 is bounded by a constant, independent of n. For the remainder of

the paper we sketch the 1D area law proved by Arad, Landau and Vazirani [6]:

Theorem 3.1 Along any cut in the chain, the entanglement entropy of |Ω〉 is

bounded by S1D(Ω) ≤ O(X3 log8X) , for X
def
= J log d

ε .

4 Outline of Proof:

A necessary and sufficient condition for a 1D area law is that the largest Schmidt

coefficient λ1 of |Ω〉 be a constant. The proof will proceed by establishing a lower-

bound on λ1. We will sketch below why this implies the area law.

Say that an operator K is an (D,∆)-Approximate Ground State Projector, if it

satisfies the following properties:

• Ground space invariance: for any ground state |Ω〉, K|Ω〉 = |Ω〉.

• Shrinking: for any state |Ω⊥〉 ∈ H⊥, also K|Ω⊥〉 ∈ H⊥, and ‖K|Ω⊥〉‖2 ≤ ∆.

• Entangling: for any state |φ〉, SR(K|φ〉) ≤ D · SR(φ).

We refer to D as the SR factor and ∆ as the shrinking factor. Clearly, there is

a race between these two factors D and ∆. It turns out that when D · ∆ ≤ 1/2,

this can be used to bound λ1:

Claim 4.1 If there exists a (D,∆)-Approximate Ground State Projector K, with

D∆ ≤ 1/2, then λ1 ≥ 1/
√

2D.

Proof: Consider the state K|L1〉 ⊗ |R1〉. It can be decomposed as λ1|Ω〉 + δ|φ〉,
where |φ〉 is orthogonal to |Ω〉, and δ2 ≤ ∆. Its squared inner product with |Ω〉 is
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therefore at least
λ2
1

λ2
1+δ

2 . Moreover its Schmidt rank is at most D. By the Eckart-

Young theorem, it follows that the squared inner product is at most D times the

largest Schmidt coefficient, or Dλ21. Therefore
λ2
1

λ2
1+δ

2 ≤ Dλ21, or D(λ21 + δ2) ≥ 1.

But since Dδ2 ≤ D∆ ≤ 1/2, it follows that Dλ21 ≥ 1/2 and so λ1 ≥ 1/
√

2D.

Corollary 4.2 If there exists a (D,∆)-Approximate Ground State Projector K,

with D∆ ≤ 1/2, then the ground state entropy is bounded by S = O(logD).

The corollary follows by applying K repeatedly to the Schmidt vector corre-

sponding to λ1. This results in a sequence of vectors which geometrically converge

to the ground state, while increasing in Schmidt rank by a factor of D with each ap-

plication. Using the Young-Eckart theorem to bound the higher Schmidt coefficients

yields the bound on the entropy.

Detectability Lemma:

As a starting point for an approximate ground state projector, consider first the

operator I − 1/mH. This operator is bounded between 0 and 1, and leaves |Ω〉
invariant. On the other hand, it shrinks any state orthogonal to |Ω〉 by a factor

of at least 1 − 1/mε. Is there a ”local” operator that achieves better shrinkage?

This is achieved Detectabiility lemma (DL) [1]: partition the projections {Pi} into

two subsets of even and odd projections, which are called “layers” Inside each

layer, the projections commute because they are non-intersecting. Consequently,

Πodd
def
= P1 · P3 · P5 · · · and Πeven

def
= P2 · P4 · P6 · · · are the projections into the

common eigenspace of the odd and even layers. Then according to the DL, the

operator A
def
= ΠevenΠodd is an approximation to the ground state projection. It

preserves the ground state, while shrinking its perpendicular subspace by an n-

independent factor ∆0(ε) ' 1− cε, where c is a geometrical factor. Moreover, each

application of A increases the Schmidt rank of our state along any cut in the chain

by a constant factor of D0
def
= d2 (due to the projection that intersects with the

cut). Unfortunately, we would expect D0∆0 > 1, so the operator A does not, by

itself, suffice as the approximate ground state projector that we wish to construct.

Entanglement Flows:

What about the operator A`? It achieves a shrinkage factor of ∆`
0, but now the

projection intersecting the cut occurs ` times, so the obvious upper bound on the

entanglement rank is D`
0. This does not provide an improvement since D0∆0 > 1

implies D`
0∆`

0 > 1 There is reason to think that this bound on the rate of increase

in entanglement is too generous. The repeated application of the projection Pi that
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intersects with the cut can only increase the SR exponentially if the entanglement

created in each iteration is moved away from the boundary to create “more room”

for further entanglement. But, intuitively, the remaining projections in A cannot

move this entanglement quickly enough to maintain this rate of growth. Although

it is not known how to show this for the operator A, it is possible to bound the

entanglement growth rate for a new approximate ground state projection operator

Â, which is created by suitably modifying A.

To prove this formally, we introduce the notion of entanglement flows. The

idea is to analyze the flow of entanglement across many cuts j, j + 1 in the vicinity

the i, i + 1 cut, as the approximate ground state projection operator is repeatedly

applied, and to show that there must be some cut j, j + 1 across which the SR

growth Dj is necessarily small. More precisely we show that the operator K = Â`

can be decomposed as the sum of a suitably small number of operators, each of

which generates small SR growth Dj at some cut j, j + 1. The SR growth across

the cut of interest i, i+ 1 can then simply be upper bounded by the sum of Djd
|i−j|

over all the operators in this decomposition. For suitable choice of `, the shrinkage

factor ∆ of the operator K and the SR growth D satisfy D∆ ≤ 1/2.

Constructing K - coarse graining and Chebyshev polynomials:

To construct the operator K we need several new ideas. First we observe that

D0 and ∆0 can be replaced by Dk
0 and ∆k

0 respectively by coarse graining — fuse

k adjacent particles, making them a single particle of dimension dk. Although this

only increases the value of the product, it creates room for the next step, which is

to modify the operator A to decrease the factor by which it blows up the Schmidt

rank. For concreteness, assume that the even layer contains the projection that

intersects with the cut. We will focus on a segment of m projections around the

cut, and denote their product by Πm, so that Πeven = ΠmΠrest. We will replace

the operator Πeven with Π̂mΠrest that closely approximates Πeven while increasing

the Schmidt rank by much less than Dk
0 (when amortized over several applications).

One of the great benefits of using the DL is that the all projections in a given

layer commute, and hence much of the following analysis becomes almost classical.

Indeed, the m projections around the cut {Pi}mi=1 define a decomposition of the

Hilbert space of the system into a direct sum of 2m eigenspaces, called sectors.

Each sector is defined by a string s = (s1, . . . , sm), such that if |ψs〉 is in the s

sector, Pi|ψs〉 = (1 − si)|ψs〉. A site with si = 1 is called a violation, since it

corresponds to a non-zero energy of the corresponding local Hamiltonian term, and∑m
i=1 si is the total number of violations in the sector s.

Now, an arbitrary state |ψ〉 can be decomposed as |ψ〉 = |ψ0〉 + |ψ1〉, where
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|ψ0〉 is its projection on the zero violations sector and |ψ1〉 is its projection on the

violating sectors. Clearly Πm|ψ〉 = |ψ0〉. To approximate this behavior, we will use

the {Pi} projections to construct an operator Π̂m that is diagonal in the sectors

decomposition, and in addition Π̂m|ψ〉 = |ψ0〉 + |ψ′1〉, with |ψ′1〉 in the violating

sectors and ‖ψ′1‖
2 ≤ δ‖ψ1‖2. It follows that the operator Â

def
= Π̂mΠrestΠodd ap-

proximates ΠevenΠodd in the sense that Â|Ω〉 = |Ω〉, Â|Ω⊥〉 ∈ H⊥, and ‖Â|Ω⊥〉‖
2
≤

(∆k
0 + δ)‖Ω⊥‖2. Let ∆̂

def
= ∆k

0 + δ.

To construct the operator Π̂m, first consider the operator N =
∑m
i=1(1 − Pi).

The operator N counts the number of violations in a sector: if |ψs〉 belongs to

the s sector, N |ψs〉 = |s| · |ψs〉. The operator Π̂m will be a polynomial in N ,

with the polynomial evaluating to 1 on |s| = 0, and less than δ on input with

|s| between 1 and m. Three ideas play a critical role in the construction of this

polynomial and in bounding the increase in Schmidt rank. The first is the use of

a Chebyshev polynomial, which achieves the desired behavior at the m + 1 points

with a degree of only j = O(
√
m log δ−1). The second idea is that it suffices to

bound the entanglement across any of the m cuts, and then pay a further penalty

of at most DI
def
= (Dk

0 )m to bound the entanglement across the cut of interest. So,

if we consider the operator Â`, each term has degree j` (i.e. is a product of j` of

the Pis), and so the typical cut is crossed j`/m times, resulting in an Schmidt rank

increase by (Dk
0 )j`/m ' D

k`/
√
m

0 . This means that the incremental Schmidt rank

per application of a term of Â is D
k/
√
m

0 , which can be made arbitrarily small by

choosing m large enough. Finally, a recursive grouping argument shows that we do

not have to pay a price in Schmidt rank proportional to the number of terms in

the polynomial (which would have been catastrophic); instead, we can decompose

the operator Â` as a sum of only 2O(log2 j) operators, for each of which there is a

(possibly different) cut with entanglement increase of ' Dk`/
√
m

0 .

Putting it all together, we have an operatorK = Â`, which increases the Schmidt

rank by D = DID̂
`, where D̂ = 2O(log2 j)D

k/
√
m

0 , and achieves a shrinkage factor of

∆ = ∆̂`. We now describe how to choose parameters such that D ·∆ ≤ 1/2. Clearly

it suffices to ensure that D̂ · ∆̂ ≤ 1/2, and to set ` = logDI + 1. Roughly, this can

be accomplished by setting 2O(log2 j)∆̂ � 1 and D
k/
√
m

0 ' 1. The first inequality

can be satisfied by choosing log 1/δ ' log2m, and k ' log2m/ε. Ignoring log

factors, the second inequality entails choosing m large enough so that D
1/ε
√
m

0 is

small. This is accomplished by choosing
√
m ' X = logD0/ε. The increase in

Schmidt rank due to an application of the operator K is therefore dominated by

the penalty DI = (Dk
0 )m for shifting back to the cut of interest. This gives a bound

of mk logD0 = O(X3).
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