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Introduction to the Current Events Bulletin 
 
Will the Riemann Hypothesis be proved this week?  What is the  Geometric 
Langlands Conjecture about?  How could you best exploit a stream of data flowing by 
too fast to capture?  I love the idea of having an expert explain such things to me in a 
brief, accessible way.  I think we mathematicians are provoked to ask such questions 
by our sense that underneath the vastness of mathematics is a fundamental unity 
allowing us to look into many different corners -- though we couldn't possibly work in 
all of them.  And I, like most of us, love common-room gossip. 
 
The Current Events Bulletin Session at the Joint Mathematics Meetings, begun in 
2003, is an event where the speakers do not report on their own work, but survey 
some of the most interesting current developments in mathematics, pure and applied.  
The wonderful tradition of the Bourbaki Seminar is an inspiration, but we aim for more 
accessible treatments and a wider range of subjects.  I've been the organizer of these 
sessions since they started, but a broadly constituted advisory committee helps select 
the topics and speakers.  Excellence in exposition is a prime consideration. 
 
A written exposition greatly increases the number of people who can enjoy the 
product of the sessions, so speakers are asked to do the hard work of producing such 
articles.  These are made into a booklet distributed at the meeting.  Speakers are 
then invited to submit papers based on them to the Bulletin of the AMS, and this has 
led to many fine publications. 
 
I hope you'll enjoy the papers produced from these sessions, but there's nothing like 
being at the talks -- don't miss them! 
 

David Eisenbud, Organizer 
University of California, Berkeley 

de@msri.org 
 

 
For PDF files of talks given in prior years, see 

http://www.ams.org/ams/current-events-bulletin.html. 
The list of speakers/titles from prior years may be found at the end of this booklet. 
 

http://www.ams.org/ams/current-events-bulletin.html




APPROXIMATE GROUPS AND THEIR APPLICATIONS: WORK
OF BOURGAIN, GAMBURD, HELFGOTT AND SARNAK

BEN GREEN

Abstract. This is a survey of several exciting recent results in which tech-
niques originating in the area known as additive combinatorics have been ap-

plied to give results in other areas, such as group theory, number theory and

theoretical computer science. We begin with a discussion of the notion of an
approximate group and also that of an approximate field, describing key re-
sults of Frĕıman-Ruzsa, Bourgain-Katz-Tao, Helfgott and others in which the

structure of such objects is elucidated. We then move on to the applications.
In particular we will look at the work of Bourgain and Gamburd on expansion
properties of Cayley graphs on SL2(Fp) and at its application in the work of

Bourgain, Gamburd and Sarnak on nonlinear sieving problems.

1. Introduction

The subject of additive combinatorics has grown enormously over the last ten
years and now comprises a large collection of tools with many applications in num-
ber theory and elsewhere, for example in group theory and theoretical computer
science. It has often been thought a little difficult to specify to an outsider exactly
what the subject is1. However the following point of view seems to be gradu-
ally crystallising: additive combinatorics is the study of approximate mathematical
structures such as approximate groups, rings, fields, polynomials and homomor-
phisms. It is interested in what the right definitions of these approximate structures
are, what can be said about them, and what applications this has to other parts of
mathematics.

This article has three main aims. Firstly, we wish to introduce the above point
of view to a general audience, focussing in particular on the basic theory of approx-
imate groups and approximate fields. Secondly, we wish to sketch some beautiful
applications of these ideas. One of them has to do with the beautiful picture on the
cover (for which we thank Cliff Reiter) of an Apollonian circle packing. It is classical
that the radii of these circles are all reciprocals of integers. We will describe work
of Bourgain, Gamburd and Sarnak giving upper bounds for the number of circles
at “depth n” which have radius the reciprocal of a prime. Thirdly, we wish to hint
at the extraordinary variety of different areas of mathematics which have started
to interact with additive combinatorics: geometric group theory, analytic number
theory, model theory and point-set topology are just the ones we shall mention
here.

2000 Mathematics Subject Classification. Primary .
This article was written while the author was a fellow at the Radcliffe Institute at Harvard. It

is a pleasure to thank the institute for its support and excellent working conditions.
1See, for example, my own attempt in the opening remarks of [26].
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2 BEN GREEN

What we offer here is merely a taste of this viewpoint of additive combinatorics
as the theory of approximate structure and of its applications. We do not touch
on the theory of approximate polynomials (a.k.a. the theory of Gowers norms)
or say much at all about approximate homomorphisms, or anything about the
many applications of these two notions. These topics will be covered in detail in
forthcoming lecture notes of the author [29].

2. Approximate groups

Before we can define an approximate group, we need to recall what an exact one
is. We shall be concerned with finite groups, and we shall be working inside some
ambient group G, so that it makes sense to talk about multiplication of elements
and taking inverses. If A ⊆ G is a finite set then we shall write A · A := {a1a2 :
a1, a2 ∈ A} and A ·A−1 := {a1a

−1
2 : a1, a2 ∈ A}. Later on we shall see more general

notations such as A ·A ·A and A ·B whose meaning, we hope, will be evident. The
following proposition, whose proof is an exercise in undergraduate group theory,
gives various criteria for A to be a subgroup or something very closely related.

Proposition 2.1. Let A be a finite subset of some ambient group G. Then we have
the following statements2:

(1) |A · A−1| > |A|, with equality if and only if A = Hx for some subgroup
H 6 G and some element x ∈ G;

(2) |A ·A| > |A|, with equality if and only if A = Hx for some subgroup H 6 G
and some element x in the normaliser NG(H);

(3) The number of quadruples (a1, a2, a3, a4) ∈ A4 with a1a
−1
2 = a3a

−1
4 is at

most |A|3, with equality if and only if A = Hx for some subgroup H 6 G
and some element x ∈ G;

(4) The number of quadruples (a1, a2, a3, a4) ∈ A4 with a1a2 = a3a4 is at most
|A|3, with equality if and only if A = Hx for some subgroup H 6 G and
some element x ∈ NG(H);

(5) P(a1a2 ∈ A|a1, a2 ∈ A) 6 1, with equality if and only if A = H for some
subgroup H 6 G;

(6) P(a1a
−1
2 ∈ A|a1, a2 ∈ A) 6 1, with equality if and only if A = H for some

subgroup H 6 G.

This would be a rather odd proposition to see formulated in an algebra text.
However each of the statements (1) – (6) has been constructed as an inequality in
such a way that one may ask when equality approximately holds. Before we can
talk about such approximate variants, however, we need to know how approximate
they will be. For this purpose we introduce a parameter K > 1; larger values of K
will indicate more approximate, and thus less structured, objects3.

2Statements (5) and (6) look “probabilistic” but this is just a notation. By P(a1a2 ∈ A|a1, a2 ∈
A) we mean simply the proportion of all pairs a1, a2 ∈ A for which a1a2 also lies in A.

3In practice the theory when K ≈ 1 is very different from the theory when, for example,

K ∼ 100. In the former setting, these approximate notions of subgroup constitute very small

perturbations of the exact characterisations of Proposition 2.1, and it turns out (though is not
always trivial to prove) that the approximate objects so defined are small perturbations of the

exact objects characterised by Proposition 2.1. In conversation Tao and I tend to refer to this
regime as “the 99% world”, an expression I would not be averse to popularising. In this paper

K will be much larger, causing the theory to become much richer. Tao and I call this the “1%
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Consider, then, the following list of properties that a finite set A ⊆ G might
enjoy.

(1) |A ·A−1| 6 K|A|;
(2) |A ·A| 6 K|A|;
(3) The number of quadruples (a1, a2, a3, a4) ∈ A4 with a1a

−1
2 = a3a

−1
4 is at

least |A|3/K;
(4) The number of quadruples (a1, a2, a3, a4) ∈ A4 with a1a2 = a3a4 is at least
|A|3/K;

(5) P(a1a2 ∈ A|a1, a2 ∈ A) > 1/K;
(6) P(a1a

−1
2 ∈ A|a1, a2 ∈ A) > 1/K.

Now these are by no means as closely equivalent as the properties (1) – (6) in
Proposition 2.1. Let us give an example in which the ambient group is Z, and
where we use additive rather than multiplicative notation. Take A = {1, . . . , n} ∪
{2n+1, 2n+2, . . . , 22n}. Then it is easy to check that (3) and (4) are both satisfied
with any K > 12, as n → ∞, this being because there are 2

3n
3(1 + o(1)) solutions

to a1 + a2 = a3 + a4 with a1, a2, a3, a4 ∈ {1, . . . , n}. On the other hand the sumset
A + A contains the numbers 2n+i + j for each pair i, j with 0 < i, j 6 n. Since
these numbers are all distinct, we have |A+A| > n2 = |A|2/2, which means that if
n is sufficiently large depending on K then (2) is not satisfied at all.

Rather remarkably, however, there is a sense in which the concepts (1) – (6) are
all roughly the same. To say what we mean by that, we introduce the following
notion of rough equivalence4.

Definition 2.2 (Rough Equivalence). Suppose that A and B are two finite sets
in some ambient group and that K > 1 is a parameter. Then we write A ∼K
B to mean that there is some x in the ambient group such that |A ∩ Bx| >
max(|A|, |B|)/K. We say that A and B are roughly equivalent (with parameter
K).

The remarkable fact alluded to above is the following. For every choice of j, j′ ∈
{1, . . . , 6}, suppose that some set A satisfies condition (j) in the list above with
parameter K. Then there is a set B satisfying condition (j′) with parameter K ′ =
poly(K) (some polynomial in K) such that A ∼K′ B. Of particular note is the
fact that the weak “statistical” properties (3) – (6) imply the apparently more
structured properties (1) and (2). The proof of this is not at all trivial and the main
content of it is the so-called Balog-Szemerédi-Gowers theorem [22], generalised to
the nonabelian setting in the fundamental paper of Tao [59], as well as a collection
of “sumset estimates” which, in the abelian case, I refer to collectively as Ruzsa
calculus [28]. These estimates of Ruzsa have such a classical role in the theory that
we record two of them, in the abelian setting, here: we will mention these two again
later on.

world” although the parameter K could be anything between 2 (say) and some small power of

|A|.
4The fact that we have written Bx rather than xB is a little arbitrary. The notion of rough

equivalence will, in this survey, be applied to classes of sets (such as (1) – (6) here) which are
invariant under conjugation, in which case whether we multiply on the left or on the right in the

definition makes little difference.
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Theorem 2.3 (Ruzsa). Suppose that A1, A2 and A3 are finite sets in some ambient
abelian group. Then |A1||A2 − A3| 6 |A1 − A2||A1 − A3| and |A1 + A1| 6 |A1 −
A1|3/|A1|2.

The original paper [47], the book [63] or the notes [28] may be consulted for
more details. The first estimate is true in general groups but adapting the second
requires care: see [59].

It might be remarked that for many pairs (j) and (j′) the correspondence between
the relevant properties is a little tighter than mere rough equivalence, and often
this can be useful. We shall not dwell on this point here. In the paper of Tao just
mentioned one finds what has become the “standard” notion of an approximate
group.

Definition 2.4 (Approximate group). Suppose that A is a finite subset of some
ambient group and that K > 1 is a parameter. Then we say that A is a K-
approximate group if it is symmetric (that is, if a ∈ A then a−1 ∈ A, and the
identity lies in A) and if there is a set X in the ambient group with |X| 6 K and
such that A ·A ⊆ X ·A.

This notion, it turns out, is roughly equivalent to (1) - (6) above. It has certain
advantages over (1) - (6), for example as regards its behaviour under homomor-
phisms. It is also clear that an approximate group in this sense enjoys good control
of iterated sumsets. Thus, for example, A · A · A ⊆ X · X · A, which means that
|A3| = |A ·A ·A| 6 K2|A|, and similarly |An| 6 Kn−1|A| where An denotes the set
of all products a1 . . . an with a1, . . . , an ∈ A. From now on, when we speak of an
approximate group, we will be referring primarily to Definition 2.4.

With this discussion in mind, we can introduce what might be termed the rough
classification problem of approximate group theory.

Question 2.5. Consider the collection C of all K-approximate groups A in some
ambient group G. Is there some “highly structured” subcollection C′ such that
every A ∈ C is roughly equivalent to some set B ∈ C′ with parameter K ′, where K ′

depends only on K?

This question has been addressed in a great many different contexts, starting
with the Frĕıman-Ruzsa theorem [20, 48], which gives an answer for subsets of
Z. Here, it is possible to take C′ to consist of the so-called generalised arithmetic
progressions, that is to say sets B of the form

B := {l1x1 + · · ·+ ldxd : li ∈ Z, |li| 6 Li},
where x1, . . . , xd ∈ R, the quantities L1, . . . , Ld are “lengths” and d 6 K. Note in
particular that, even in the highly abelian setting of the integers Z, approximate
groups are a more general kind of object than genuine subgroups. That is, the
theory of approximate groups, even up to rough equivalence, is a little richer than
the theory of finite subgroups of Z (which is in fact a rather trivial theory). The
remarkable feature of the Frĕıman-Ruzsa theorem is that the theory is not much
richer, in the sense that generalised progressions remain highly “algebraic” objects.
Here is a list of other contexts in which the question has been at least partially
answered:

• abelian groups [30];



APPROXIMATE GROUPS AND THEIR APPLICATIONS 5

• nilpotent and solvable groups [10, 11, 19, 50, 61];
• free groups [46];
• linear groups SL2(R) [16],

SL2(C) [13, 33, 34],
SL3(Z) [13],
SL3(C) (sketched in [34]),
“bounded” subsets of SLn(C) including Un(C) [12],
SL2(Fp) [33],
SL3(Fp) [34]
and SL2(Z/qZ) for various other q (cf. [4]).

It is generally felt that approximate groups in quite general contexts can be
controlled by objects built up from genuine subgroups and nilpotent objects; this
has been found in all of the examples just mentioned and is suggested by the
famous theorem of Gromov on groups with polynomial growth [32] and the recent
quantitative formulation of it due to Shalom and Tao [55]. Quite precise suggestions
along these lines have been made by Helfgott, Lindenstrauss and others: more
information on this can be found on Tao’s blog [62].

Before leaving this subject, we remark that even (perhaps especially) in the
abelian case the issue of the dependence of K ′ on K is far from being resolved. No
examples are known to rule out the possibility that, with the right definition of the
highly-structured class C′, K ′ can be taken to be polynomial in K. In particular
this is conjectured when the ambient group G is FZ

2 , the countable infinite vector
space over the field of two elements, and C′ consists of (finite) subgroups of G.
This assertion5 is known as the polynomial Frĕıman-Ruzsa conjecture [49], see also
[25, 27]. It is equivalent to the following question which, for many years, I have
tried to advertise to those for whom the word cohomology holds no fear.

Question 2.6. Suppose that φ : Fn2 → FZ
2 is a map such that φ(x+y)−φ(x)−φ(y)

takes on at most K different values as x, y range over Fn2 . Is it true that φ = φ̃+ η,
where φ̃ is linear and η takes on at most K ′ = poly(K) different values?

It is a very easy exercise to obtain such a statement with K ′ = 2K but, so far
as I know, no serious improvement of this bound has ever been obtained6.

3. Approximate rings and fields

Fortified by the experiences of the last section, one might attempt to come up
with a sensible notion of an approximate ring. A natural one, based perhaps on (2)
in the previous section, is as follows: if A is a finite subset of some ambient ring R,
we say that it is a K-approximate ring if |A+A| 6 K|A| and |A ·A| 6 K|A|. Here,
of course, A+A := {a1 +a2 : a1, a2 ∈ A} and A ·A = {a1a2 : a1, a2 ∈ A} as before.
If R = F is actually a field (or an integral domain, which embeds into its field
of fractions) then we refer to A as an approximate field, noting that approximate
closure under division is essentially automatic in view of the rough equivalence of
the notions (1) and (2) of approximate group.

5There are variants of this conjecture over other groups, such as Z; see [23, 31].
6I would be very interested to see even a bound of the form 2o(K).
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The study of approximate rings and fields was initiated in a paper of Erdős and
Szemerédi [17] who proved (though not in this language!) that a K-approximate
subfield of Z must have size poly(K). They in fact conjectured that the right
bound is CεK1+ε for any ε > 0, but this is so far unresolved; the best exponent so
far obtained is 3 + ε, a result of Solymosi [57]. Note that this is equivalent to, and
more usually stated as, the lower bound

max(|A+A|, |A ·A|) > cε|A|4/3+ε

for all finite sets A ⊆ Z. In a different paper [56], Solymosi generalised the Erdős-
Szemerédi result to show that every K-approximate subfield of C has size at most
212K4.

The general theory of approximate fields can be said to have started with the
papers of Bourgain-Katz-Tao [8] and Bourgain-Glibichuk-Konyagin [7, 9], where7

the following result is established.

Theorem 3.1. Let p be a prime and let K > 2. Then every K-approximate subfield
of Fp has size at most KC or at least K−Cp, for some absolute constant C.

The arguments on page 384 of [7], though they are phrased in a more limited
context, essentially prove that every approximate subfield (in an arbitrary ambient
field) must be roughly equivalent to a genuine finite subfield. This unifies the results
of Erdős-Szemerédi and Solymosi with Theorem 3.1. In fact something similar is
true for approximate rings, at least provided the ambient ring R does not have “too
many” zero divisors. These issues are comprehensively explored in an interesting
paper [60] of Tao, which also has a very comprehensive collection of references.

Suppose that A is a K-approximate field in some ambient field F, that is to
say both |A · A| and |A + A| are bounded by K|A|. We are going to sketch a
proof that F must contain a genuine subfield B which is “close” to A. The first
step is to prove the Katz-Tao lemma, which asserts that A (or, more precisely, a
large subset A′ ⊆ A) behaves in a manner which more strongly resembles that
of a field: that is to say, A is almost closed under both addition/subtraction and
multiplication/division simultaneously. To give a (relevant) example, the set

A := {a5 + a6
a1 − a3

a4 − a2
: a1, . . . , a6 ∈ A}

has size K|A|, where K = poly(K).
A slick proof of the Katz-Tao lemma is given in [60, Section 2.5] and we shall

say little more about it here other than to remark that it involves a combination
of Ruzsa’s sumset calculus and clever elementary arguments. Personally, I regard
it as part of the “basic” theory of approximate fields as opposed to the “structural
theory”, to be regarded on the same level as the arguments used to show that def-
initions (1) – (6) of an approximate group are roughly equivalent (namely, Ruzsa’s
sumset calculus and the Balog-Szemerédi-Gowers theorem). In other words one
might argue that the smallness of A, or of similar objects, might be taken as an
alternative definition of approximate field.

7The original paper [8] of Bourgain, Katz and Tao did not quite classify the very small (smaller

than pδ) approximate subrings of Fp; this restriction was removed in [7, 9]. Very often the

approximate fields under consideration in a given setting will have size at least pδ, and for this
reason one often refers to the Bourgain-Katz-Tao theorem.
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Suppose that A is known to have this property, that is to say |A| 6 K|A|. Then
it is possible to establish an intriguing dichotomy: if ξ ∈ F× then either

(3.1) |A+Aξ| = |A|2

or

(3.2) |A+Aξ| 6 K|A|.

Here, A + Aξ refers to the set of all a1 + a2ξ with a1, a2 ∈ A. To see why this is
so, note that |A + Aξ| 6 |A|2 and that equality occurs if and only if the elements
a1 + a2ξ are all distinct. If equality does not occur then we may find a nontrivial
solution to a1 + a2ξ = a3 + a4ξ, which means that ξ = a1−a3

a4−a2
. But then every

element of A+Aξ has the form

a5 + a6ξ = a5 + a6
a1 − a3

a4 − a2
,

and thus lies in A.
On the other hand, it is not hard to see using Ruzsa calculus8 that if ξ1, ξ2 satisfy

(3.2) then for ξ = ξ1 + ξ2, ξ1 − ξ2, ξ1ξ2, ξ1ξ−1
2 we have

|A+ ξ ·A| 6 KC |A| 6 KC′ |A|

for absolute constants C,C ′. If K is a sufficiently small power of |A| then this
means that (3.1) cannot hold, forcing us to conclude that (3.2) holds for ξ. In
this way we identify the set9 of all ξ satisfying (3.2) as a genuine subfield of F.
Straightforward additional arguments allow one to show that this subfield and F
are roughly equivalent.

The original argument of [8] is different and specific to Fp but rather fun and,
given the preceding discussion, it is not hard to say a few meaningful words about it.
Suppose for the sake of illustration that A ⊆ Fp is a K-approximate subfield of size
∼ p1/10; our task is to derive a contradiction if (say) K = po(1). Suppose that the
Katz-Tao lemma has already been applied, so that A, as defined above, is known to

be small. The sets A,A, . . . arising from (boundedly many) successive applications
of this operation may also be shown to be small. Now simple averaging arguments
(using nothing more than the fact that |A| = p1/10) show that Fp has dimension
at most 100 (say) as a “vector space” over A; that is, there exist x1, . . . , x100 ∈ Fp
such that

(3.3) Fp = Ax1 + · · ·+Ax100.

Now x1, . . . , x100 cannot be a “basis” for Fp over A since otherwise we would have
p = |A|100, contrary to the assumption that p is prime. Thus there must exist some
x ∈ Fp which is representable in two different ways as

x = a1x1 + · · ·+ a100x100 = a′1x1 + · · ·+ a′100x100

8In addition to the bounds of Theorem 2.3 one requires an inequality controlling |A1 +A2 +A3|
in terms of the |Ai +Aj |.

9Note that this set may be identified with A−A
(A−A)×

.
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with a1, . . . , a100, a
′
1, . . . , a

′
100 ∈ A. Suppose, without loss of generality, that a100 6=

a′100. Then

x100 =
(a1 − a′1)x1 + · · ·+ (a99 − a′99)x99

a′100 − a100
.

By substituting this expression for x100 into (3.3), we see that

Fp = Ax1 + · · ·+Ax99.

Repeating the argument gives (without loss of generality)

Fp = Ax1 + · · ·+Ax98,

and we may continue in this fashion to get, eventually,

Fp =
˙̇
Ax1.

This is contrary to the fact that none of the sets A,A, . . . has size much larger than
that of A itself, namely about p1/10, and a contradiction ensues.

Remarkably, the main “dimension reduction” idea here comes from a paper in
point-set topology, namely Edgar and Miller’s solution of the Erdős-Volkmann ring
problem [15] (that is, the statement that all Borel subrings of R have dimension 0
or 1). See in particular Lemma 1.3 of that paper.

4. Helfgott’s results

In this section we discuss the results of Helfgott [33, 34] concerning approximate
subgroups of

SL2(Fp) := {
(
a b
c d

)
: a, b, c, d ∈ Fp : ad− bc = 1}.

Helfgott proves the following.

Theorem 4.1 (Helfgott). Suppose that A ⊆ SL2(Fp) is a K-approximate group.
Then A is roughly KC-equivalent to an upper-triangular KC-approximate subgroup
of SL2(Fp) (that is, an approximate subgroup conjugate to a set of upper-triangular
matrices).

Rather than discuss Helfgott’s result itself, we discuss the analogous question for
SL2(C). Here the answer is rather simpler and is given in [13], based on Helfgott’s
work.

Theorem 4.2. Suppose that A ⊆ SL2(C) is a K-approximate group. Then A is
roughly KC-equivalent to an abelian KC-approximate subgroup of SL2(C).

If desired the abelian approximate group could itself be controlled by a gener-
alised progression using the Frĕıman-Ruzsa theorem.

We will only sketch a proof of the weaker result that A is KC-equivalent to an
upper-triangular KC-approximate subgroup, that is to say the direct analogue of
Helfgott’s result. In SL2(C), additional arguments may then be applied to prove
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Theorem 4.2; there are no such arguments in SL2(Fp), since the upper-triangular
“Borel subgroup”

{
(
λ µ
0 λ−1

)
: λ ∈ F∗p, µ ∈ Fp}

is not close to abelian.
The proof of this weak form of Theorem 4.2 is simpler than that of Theorem

4.1 in two major ways. Firstly since C is algebraically closed we may talk about
eigenvalues, eigenvectors and diagonalization without the need to pass to an exten-
sion field, whereas over Fp we would have to involve the quadratic extension Fp2 .
Secondly, the structure of K-approximate subfields of C is easy to describe: by the
theorem of Solymosi [56] they are all sets of size at most 212K4. Theorem 3.1, by
contrast, has to allow for those approximate fields which are almost all of Fp. Worse
still, to handle SL2(Fp) Helfgott must in fact classify approximate subfields of Fp2 ,
and this involves the additional possibility of sets which are close to the subfield
Fp.

For the sake of exposition, we will assume in the first instance that A is a
genuine finite subgroup of SL2(C); our task is to show that A contains a large
upper-triangular subgroup. When we have sketched how Helfgott’s argument looks
in this case we will remark on the additional technicalities required to make the
argument “robust” enough to apply to K-approximate groups.

The key idea in Helfgott’s argument, referred to by subsequent authors as trace
amplification, involves examining the set of traces

trA := {tr a : a ∈ A}.

We will sketch a proof that a large subset of this set of traces is a 224-approximate
subfield of C of size greater than 2108. This contradicts Solymosi’s theorem [56]
and so we must be in one of those degenerate situations. Careful analysis of each
of them leads to the conclusion that A is roughly upper-triangular.

The first degenerate situation to analyse is that in which trA is small, an ap-
propriate notion of small being | trA| 6 2111. Now a linear algebra computation
(Lemma 4.2 of [6]) confirms that if g, h ∈ A are elements without a common eigen-
vector in C2 then the map

SL2(C)→ C3 : x 7→ (trx, tr(gx), tr(hx))

is at most two-to-one. This, or rather the fact that something like this holds, is
not at all surprising: indeed knowledge of tr(x), tr(gx), tr(hx) together with the
fact that det(x) = 1 provides four pieces of information which, generically, ought
to more-or-less determine the four entries of the matrix x. If A contains two such
elements g, h then it follows that we have

|A| 6 2| trA|3 6 2334,

and so |A| is also small10. If, by contrast, A does not contain two such elements, and
if |A| > 3, then it is easy to see that there is some v ∈ C2 which is an eigenvector
for all of A simultaneously. With respect to a basis containing v, every matrix in
A is upper-triangular.

10Additive combinatorics has a bad reputation for referring to quantities like 2334 as “small”.
“Bounded by an absolute constant” might be more appropriate.
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Suppose, then, that | trA| > 2111. In particular (!) there is some element g ∈ A
which is non-parabolic, or in other words tr g 6= ±2; such elements have distinct
eigenvalues and so are diagonalisable.

Write A′ ⊆ A for the set of non-parabolic elements; then | trA′| > | trA| −
2 > 1

2 | trA|. Now in SL2(C) the trace of a non-parabolic element g completely
determines the conjugacy class of g. It follows that there is some non-parabolic
g ∈ A such that the conjugacy class of A containing g has size at most 2|A|/| trA|.
By the orbit-stabiliser theorem, the centraliser11

T = CA(g) = {a ∈ A : ag = ga}
has size at least 1

2 | trA|. But by changing basis so that g is in diagonal form (with
distinct diagonal entries) it is not hard to check that T consists entirely of diagonal
matrices. No single trace can arise from more than two of these elements, and so
| trT | > 1

4 | trA| > 2109. We shall show that the set

R := {tr a2 : a ∈ T}
is a 224-approximate subfield of C. Noting that

(4.1) |R| > 1
2 | trT | > 2108,

this is contrary to Solymosi’s theorem. In order to do this we play around a little
with traces. Such playing around is most productive if, in the basis just selected,

there is an element a =
(
a11 a12

a21 a22

)
∈ A with a11a12a21a22 6= 0. The absence of

such an element is another degenerate situation to analyse, and once again one can
check12 that A must be either upper-triangular or else equal to one of the dihedral
groups, each of which has an index two abelian subgroup.

Now let us note that

(4.2) R ·R ⊆ R+R,

this being a consequence of the fact that

(t21 + t−2
1 )(t22 + t−2

2 ) = (t21t
2
2 + t−2

1 t−2
2 ) + (t21t

−2
2 + t−2

1 t22).

Let us also note that

tr
((t1t2 0

0 t−1
1 t−1

2

)
a

(
t1t
−1
2 0

0 t−1
1 t2

)
a−1

)
= µ(t21 + t−2

1 ) + λ(t22 + t−2
2 ),

where µ := a11a22 6= 0 and λ := −a12a21 6= 0, which means that

λR+ µR ⊆ trA.

In particular
|R+

µ

λ
R| = |λR+ µR| 6 | trA| 6 16|R|,

which, by Ruzsa’s inequalities (Theorem 2.3, applied with A1 = µ
λR and A2 = A3 =

−R) implies that |R + R| 6 224|R|. This, together with (4.2), implies that R is a
224-approximate subring of C. By Solymosi’s theorem this implies that |R| 6 2108,
contrary to (4.1). �

In the above sketch we assumed, of course, that A was actually a finite subgroup.
However the argument was of a type that can be made to work for K-approximate

11T is for torus, the word used for such a subgroup in Lie theory.
12This is, admittedly, a somewhat tedious check.
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groups also. To explain what we mean by this let us remark, rather vaguely, on
how one or two of the steps adapt and then offer some general remarks.

Orbit-Stabiliser theorem. If A is a group and if x ∈ A then we used the fact
that the size of the conjugacy class Σ(x) containing x and that of the centraliser
CA(x) are related by |Σ(x)||CA(x)| = |A|. In fact we only used the inequality
|CA(x)| > |A|/|Σ(x)|, giving us an element with large centraliser, and here is a
simple way of seeing why this holds: all of the conjugates axa−1, a ∈ A, lie in Σ(x),
and so by the pigeonhole principle there must be distinct elements a1, . . . , ak ∈ A,
k > |A|/|Σ(x)|, with a1xa

−1
1 = · · · = akxa

−1
k . But then the elements a−1

i a1,
i = 1, . . . , k, centralise x. Now if A is only a K-approximate group then this
argument does not quite work, as there is no well-defined notion of conjugacy class.
However a similar pigeonhole argument nonetheless gives us an element with large
centraliser, since the conjugates axa−1 are all constrained to lie in A3, a set of size
at most K2|A|.

Escape from subvarieties. A more interesting point concerns the location of an
element of A which, in a given basis, has no zero entries. Whilst this might not be
a priori possible if A is only an approximate group, it is possible to find such an
element in An for some bounded n (independent of the approximation parameter
K), and this is good enough for Helfgott’s purposes. This is a special case of a nice
lemma of Eskin, Mozes and Oh [18] called “escape from subvarieties”. The point
is that the group 〈A〉 generated by A, if it is not almost upper-triangular, contains
an element with no zero entries – indeed this fact was used in the above sketch. In
other words, 〈A〉 is not contained in the subvariety of SL2(C) defined by

V := {
(
x11 x12

x21 x22

)
: x11x12x21x22 = 0}.

The Eskin-Mozes-Oh result states that in such a situation we can find “evidence” for
the non-containment of 〈A〉 inside V by taking just a bounded number, depending
only on V , of products of A.

It seems, then, that certain types of argument – in some sense those involving
“bounded length” computations in the ambient group – adapt very well from the
traditional group theory setting to approximate groups. At the moment we do
not have anything approaching a precise formulation of this principle and indeed
at present the passage from the “exact” to the approximate is as much an art as
a science. Nonetheless, there seems to be merit in looking for “bounded length”
proofs in traditional group theory which might be adapted to the approximate
setting. Perhaps this is as good a place as any to mention the remarkable recent
paper of Hrushovski [36] in which tools from model theory have been applied to
the study of approximate groups. The ramifications of that paper are not yet
completely clear, but it looks as though Theorem 1.3 of that paper together with
some structure theory of algebraic groups ought to lead, without too much difficulty,
to a proof of the following statement.

Conjecture 4.3. Suppose that A ⊆ SLn(C) is a K-approximate group. Then
there is a K ′-approximate group B which is nilpotent and K ′-controls A, where K ′

depends only on K.

It seems reasonable to conjecture that K ′ can be taken to depend polynomially
on K, although in their present form Hrushovski’s techniques will not give this.
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5. Cayley graphs on SL2(Fp)

We move on now to applications of the theory of approximate groups. In this
section we discuss the paper [3] of Bourgain and Gamburd. This paper concerns
expander graphs. For the purposes of this discussion these are 2k-regular graphs
Γ on n vertices for which there is a constant c > 0 such that for any set X of at
most n/2 vertices of Γ, the number of vertices outside X which are adjacent to X
is at least c|X|. Expander graphs share many of the properties of random regular
graphs, and this is an important reason why they are of great interest in theoretical
computer science. There are many excellent articles on expander graphs ranging
from the very concise [51] to the seriously comprehensive [35].

A key issue is that of constructing explicit expander graphs, and in particular
that of constructing families of expanders in which k and c are fixed but the number
n of vertices tends to infinity. Many constructions have been given, and several
of them arise from Cayley graphs. Let G be a finite group and suppose that
S = {g±1

1 , . . . , g±1
k } is a symmetric set of generators for G. The Cayley graph

C(G,S) is the 2k-regular graph on vertex set G in which vertices x and y are joined
if and only if xy−1 ∈ S. Such graphs provided some of the earliest examples of
expanders [41, 42]. A natural way to obtain a family of such graphs is to take some
large “mother” group G̃ admitting many homomorphisms π from G̃ to finite groups,
a set S̃ ⊆ G̃, and then to consider the family of Cayley graphs C(π(G̃), π(S̃)) as π
ranges over a family of homomorphisms. The work under discussion concerns the
case G̃ = SL2(Z), which of course admits homomorphisms πp : SL2(Z) → SL2(Fp)
for each prime p. For certain sets S̃ ⊆ G̃, for example

S̃ = {
(

1 1
0 1

)±1

,

(
1 0
1 1

)±1

}

or

S̃ = {
(

1 2
0 1

)±1

,

(
1 0
2 1

)±1

},

spectral methods from the theory of automorphic forms may be used to show that
(C(πp(G̃), πp(S̃)))p prime is a family of expanders. See [40] and the references therein.
These methods depend on the fact that the group 〈S̃〉 has finite index in G̃ = SL2(Z)
and they fail when this is not the case, for example when

(5.1) S̃ = {
(

1 3
0 1

)±1

,

(
1 0
3 1

)±1

}.

In [40] Lubotzky asked whether the corresponding Cayley graphs in this and other
cases might nonetheless form a family of expanders, the particular case of (5.1)
being known as his “1-2-3 question”. The paper of Bourgain and Gamburd under
discussion answers this quite comprehensively, showing that all that is required is
that the group generated by S̃ is not virtually abelian (contains a finite index abelian
subgroup). We will sketch the proof in the case that S̃ generates a nonabelian free
subgroup of SL2(Z). This is essentially the most general case, since the kernel of
the natural homomorpism from 〈S̃〉 to SL2(F2) ∼= Sym(3) is free and has index at
most 6 in 〈S̃〉.
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Theorem 5.1 (Bourgain – Gamburd). Let G̃ = SL2(Z) as above and suppose that
S̃ is a finite symmetric set generating a free subgroup of SL2(Z). Then

(C(πp(G̃), πp(S̃)))p prime

is a family of expanders.

The notation we have introduced here is rather cumbersome, so let us write
Γp := C(πp(G̃), πp(S̃)). For concreteness we will focus on the special case S̃ =

{A,A−1, B,B−1}, where A =
(

1 3
0 1

)
and B =

(
1 0
3 1

)
are the matrices relevant

to Lubotzky’s 1-2-3 question. The argument is almost identical in any other case.
In this case, then, Γp is the graph on vertex set SL2(Fp) in which x is joined to y
if and only if xy−1 is one of the elements A,A−1, B or B−1 considered modulo p.
Supposing that p > 3, each of these graphs is 4-regular. The number of verices in
Γp is n := |SL2(Fp)| = p(p2 − 1).

The reader may be interested to see a proof, using the “ping-pong” technique of
Felix Klein, that that the subgroup of SL2(Z) generated by these A and B is indeed
free. Consider the natural action of A and B on the projective plane P1(Q). Write

X := {(λ : 1) ∈ P1(Q) : |λ| < 1}
and

Y := {(1 : λ) ∈ P1(Q) : |λ| < 1},
and observe that X and Y are disjoint and jouent au ping pong, that is to say

An(X) ⊆ Y for all n ∈ Z \ {0}
and

Bn(Y ) ⊆ X for all n ∈ Z \ {0}.
(The origin of the name should be clear – the “players” A and B hit the domains
X and Y back and forth – as should the preference for the French term rather
than the cumbersome “play table tennis with one another”.) If the group gen-
erated by A and B is not free, then some nontrivial reduced word in A and B
is equal to the identity, where “reduced word” means a finite word of the form
. . . Am1Bn1 . . . AmkBnk . . . with m1, n1, . . . ,mk, nk 6= 0. The conjugate of such a
word by an appropriate power of A will still be the identity and will now have the
form w = Am1Bn1 . . . AmkBnkAmk+1 with mi, nj 6= 0. However by repeated appli-
cation of the ping-pong properties we see that w(X) ⊆ Y , certainly an impossibility
since X and Y are disjoint and w is supposed to be the identity.

Following that slight digression let us focus once again on the Cayley graphs Γp,
our aim being to prove that they form a family of expanders as p ranges over the
primes. To do this we begin by giving a spectral interpretation of the expansion
property which we defined combinatorially above. For each p we may consider the
Laplacian of the corresponding Cayley graph, that is to say the operator

∆ : L2(SL2(Fp))→ L2(SL2(Fp))
defined by

∆f(x) := f(x)− 1
4 (f(Ax) + f(A−1x) + f(Bx) + f(B−1x)).

The eigenvalues of the Laplacian lie in the interval [0, 2]. Zero is certainly an
eigenvalue, since ∆1 = 0. Write the eigenvalues in ascending order as 0 = λ0 6
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λ1 6 . . . 6 λn−1. It turns out the expansion properties of the graph Γp (in fact of
any regular graph) are intimately connected with the size of the second-smallest
eigenvalue λ1 = λ1(Γp). The precise relation between the combinatorial property
of expansion and this spectral property is discussed in Section 2 of [35], but for
our purposes we need only remark that it suffices to show that the second-smallest
eigenvalue λ1(Γp) is bounded away from zero independently of n (in fact, this is
also a necessary condition for expansion). The term spectral gap is used to describe
this property: there is a gap at the bottom of the spectrum in which there are no
eigenvalues apart from zero.

To try to show that there is a spectral gap, consider the operator

T : L2(SL2(Fp))→ L2(SL2(Fp))
given by T := 4(id−∆), that is to say

Tf(x) := f(Ax) + f(A−1x) + f(Bx) + f(B−1x).

The matrix13 of T is same thing as the adjacency matrix of the graph Γp, that is
to say the matrix whose xy entry is 1 if x ∼ y and zero otherwise. The eigenvalues
of T are of course µi = 4(1− λi), i = 0, . . . , n− 1, and it is a very well-known and
easy to establish fact that the 2mth moment

∑n−1
i=0 µ

2m
i is equal to n times W2m,

the number of closed walks of length 2m from the identity to itself. It follows that
we have

(5.2) W2m =
1
n

42m

(
1 +

n−1∑
i=1

(1− λi)2m
)
.

Note in particular that W2m > 1
n42m, since all the terms are non-negative. At first

glance it looks as though the only way to use (5.2) to bound λ1 away from zero
would be to get rather precise estimates on W2m, and in particular one would at the
very least want to show that W2m < 2

n42m. However a remarkable observation, used
earlier in related contexts by Sarnak and Xue [54] and Gamburd [21], comes into
play. This is that any eigenspace of the Laplacian is SL2(Fp)-invariant, where the
action of SL2(Fp) on L2(SL2(Fp)) is the right-regular one given by g◦f(x) := f(xg).
In other words, any such eigenspace has the structure of a representation of SL2(Fp)
and thus, by basic representation theory, decomposes into irreducible representation
of SL2(Fp). But by a classical theorem of Frobenius all such representations have
dimension at least (p− 1)/2 ∼ n1/3. This means that λ1 = λ2 = · · · = λl for some
l ∼ n1/3, and hence from (5.2) we in fact have the bound

(5.3) W2m �
1

n2/3
42m(1− λ1)2m.

This enables a meaningful spectral gap (lower bound on λ1) to be obtained from
somewhat weaker upper bounds on W2m.

The main new content of [3], then, is to obtain those upper bounds on W2m, the
number of walks of length 2m starting and finishing at the identity, for appropriate
m. A nice way of thinking about these walks is in terms of convolution powers of
the probability measure

ν := 1
4 (δA + δA−1 + δB + δB−1)

13With respect to the basis of SL2(Fp) consisting of the functions 1t : SL2(Fp) → C defined

by 1t(x) = 1 if x = t and 0 otherwise.
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on SL2(Fp), where δg(x) = n if x = g and 0 otherwise. This measure ν is a very
singular or “spiky” probability measure, supported on just the four points A,A−1, B
and B−1. Now the convolution

ν(2) := ν ∗ ν(x) := Ey∈SL2(Fp)ν(xy−1)ν(y)

is supported on words of length at most two in A,A−1, B and B−1, or alternatively
those x in the graph Γp which can be reached from the identity by a path of length
two, the value of ν ∗ ν(x) being 4−2n times the number of paths of length two from
the identity to x. Similarly higher convolution powers ν(m)(x) := ν ∗ · · · ∗ ν(x) give
4−mn times the number of paths of length m from the identity to x. The idea
of the proof is to examine these convolution powers, showing that they become
progressively more “spread out” until, for suitable m, ν(2m) vaguely resembles the
uniform measure 1 which assigns weight one to each point of SL2(Fp). Then, in
particular, ν(2m)(0) ∼ 1, meaning that W2m ∼ 42m/n. Combined with (5.3), this
is enough to establish the desired spectral gap.

The notion of a probability measure µ on SL2(Fp) being “spread out” may be
quantified using the L2-norm

‖µ‖2 :=
(
Ex∈SL2(Fp)µ(x)2

)1/2
.

The L2-norm of a delta measure δg is n1/2, which is huge, whilst that of the uni-
form measure 1 is equal to one, the smallest value possible by the Cauchy-Schwarz
inequality. It is not hard to show that convolution cannot increase the L2-norm,
and so we have the chain of inequalities

(5.4) n1/2 = ‖ν(1)‖2 > ‖ν(2)‖2 > . . . .

The aim is to show that this sequence is, in fact, rather rapidly decreasing. Roughly
speaking one shows that

(5.5) ‖ν(m1)‖2 ≈ 1

for some m1 ≈ C1 log p; this m1 turns out to be an appropriate choice to substitute
into (5.3) in order to reach the desired conclusions.

It turns out that this sequence gets off to a rather good start. This is a con-
sequence of an observation of Margulis [43], namely that the freeness of the sub-
group of SL2(Z) generated by A and B persists to some extent even when re-
duced modulo p. Indeed let us take a reduced word w = Am1Bn1 . . . AmkBnk with
m1, . . . ,mk, n1, . . . , nk 6= 0 and suppose that this equals the identity when reduced
modulo p, that is to say in SL2(Fp). Lifting back up to SL2(Z) we have

w̃ = Am1Bn1 . . . AmkBnk ≡ id (mod p).

But the freeness of the lifted group means that w̃ 6= id, and thus in order to be
congruent to the identity mod p the matrix w̃ must have at least one entry of size
at least p − 1. But by some simple matrix inequalities this is impossible provided
that

|m1|+ |n1|+ · · ·+ |mk|+ |nk| < c log p
for some absolute constant c > 0.

It follows that the subgroup of SL2(Fp) generated by A and B is “free up to
words of length c log p”. In terms of the Cayley graphs Γp this means that up to
retracing steps there is a unique walk of length m between the identity and x for
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any x ∈ SL2(Fp) and for any m 6 m0 := c log p/2. This implies that the measures
ν(m), m > m0 are already rather spread out. To quantify this (and in particular
to deal with the issue of “retracing steps”) a result of Kesten concerning random
walks in the free group may be applied. The conclusion is that

(5.6) ‖ν(m0)‖2 � n1/2−γ

for some γ > 0. This is good progress on the way to (5.5) and represents a significant
improvement on the initial bound ‖ν(1)‖2 = n1/2.

It is convenient to imagine, for the rest of the argument, that all probability
measures µ on G have the form µ(x) = n

|A|1A(x) for some set A ⊆ G, the “support”
of µ. Whilst this is clearly not true, various (somewhat technical) decompositions
into level sets may be used to reduce to this case. For such a measure we have

‖µ‖2 = (n/|A|)1/2,

and so the bound (5.6) corresponds to |A| � n2γ , certainly a reasonable level of
spreadoutness.

The rest of the argument, which constitutes the heart of the paper, involves
examining the convolution powers between ν(m0) and ν(m1) for a suitable m1 ∼
C1 log p, the aim being to establish (5.5). An application of the “dyadic pigeonhol-
ing argument”, used to great effect by Bourgain in many papers, is employed: if
‖ν(m1)‖2 is much larger than 1, this means that the sequence (5.4) cannot decay too
rapidly between ν(m0) and ν(m1) and so there must be two convolution powers ν(m)

and ν(2m), m0 6 m < m1, such that ‖ν(2m)‖2 ≈ ‖ν(m)‖2. Let us be deliberately
vague about the meaning of ≈ here.

Suppose that ν(m)(x) = n
|A|1A(x) for some set A ⊆ G. Noting that ν(2m) =

ν(m) ∗ ν(m), it is not hard to compute that the ratio

‖ν(2m)‖22/‖ν(m)‖22
is actually equal to |A|−3 times the number of quadruples a1, a2, a3, a4 ∈ A4 with
a1a2 = a3a4. This may be compared with condition (4) in the list of properties
which are known to roughly characterise approximate groups. Thus, being even
rougher at this point,

(5.7) ν(m) ∼ 1
H

1H

for some approximate group H ⊆ SL2(Fp). Note that the rough equivalence of
(4) and other, more flexible definitions such as Definition 2.4 is one of the deeper
equivalences mentioned in §2, being reliant on the nonabelian Balog-Szemerédi-
Gowers theorem of Tao [59].

If H is already all of SL2(Fp) then (5.7) is telling us that ν(m) is close to the
uniform distribution, in which case so is ν(m1), hence (5.5) is established and we
are done. If not then we apply Helfgott’s result, Theorem 4.1, to conclude that
H is essentially upper-triangular, and hence that ν(m0) has significant mass on an
upper-triangular subgroup of SL2(Fp).

The support of ν(m0), however, consists of words of length at most m0 in the
generators A,A−1, B and B−1 and, as we stated, these elements behave freely up
to words of this length. This is highly incompatible with upper-triangularity, which
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in particular implies that we always have the commutator relation14

(5.8) [[g1, g2], [g3, g4]] = id .

A pleasant group-theoretic argument formalises this incompatibility and allows one
to show that any set of words of length at most m0 in the generators A,A−1, B
and B−1 satisfying (5.8) has size at most m6

0. This represents a tiny proportion of
the set of all such words, which (counted with multiplicity at least) has cardinality
4m0 . This contradiction finishes the sketch proof of Theorem 5.1. �

Before moving on, we wish to record, for use in the next section, a further
observation concerning the measures ν(m). We sketched a proof that ‖ν(m1)‖2 ≈
1 for some m1 ∼ C1 log p, that is to say ν(m1) vaguely resembles the uniform
distribution on SL2(Fp). By taking further convolutions and using the fact that
irreducible representations have large degree once more, this may be bootstrapped
to show that ν(m) becomes exponentially well uniformly-distributed:

(5.9) ν(m)(x) = 1 +O(ne−cm)

for some absolute c > 0 and for all m. Alternatively, such a statement can be
deduced directly from the spectral gap property, as is done for example in [6, §3.3].

It is interesting to ask whether the arguments might adapt to deal with Cayley
graphs on SLn(Fp) with n > 3. A recent paper of Bourgain and Gamburd [5] shows
that this is the case when n = 3. The argument is, in large part, quite similar to
the above, except of course that Helfgott’s theorem on approximate subgroups of
SL2(Fp) must be replaced by his more difficult result [34] on approximate subgroups
of SL3(Fp). There is one significant extra difficulty, however, which is that there are
proper subgroups of SL3(Fp) which are not close to upper-triangular, an obvious
example being a copy of SL2(Fp). To deal with this a deep algebro-geometric
result of Nori [45] is brought into play, which states that any proper subgroup of
SL3(Fp), p sufficiently large, must satisfy a non-trivial polynomial equation. To
obtain a contradiction, it must be shown that the set of words of length m0 in the
generators A and B (say) does not concentrate on the corresponding subvariety
of SL3(C), and here techniques from the theory of random matrix products and a
certain amount of “quantitative algebraic geometry” are brought into play.

6. Nonlinear sieving problems

In this section we discuss work of Bourgain, Gamburd and Sarnak [6]. The goal
of sieve theory, traditionally viewed as a part of analytic number theory, is to find
prime numbers or at least to say something about them. Historically, the sieve
arose through work of Brun and Merlin on the twin prime problem, that is to say
the problem of finding infinitely may primes p such that p+ 2 is also prime. Whilst
this remains a famous open problem, approximations to it have been found. For
example, Brun established the following result.

Theorem 6.1 (Brun). There are infinitely many integers n such that n(n+ 2) has
at most 9 prime factors.

14In other words, upper-triangular subgroups of SL2(Fp) are 2-step solvable.
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Much later, Chen [14] replaced 9 by 3. One way of stating this type of result is
as follows: there are infinitely many n for which both n(n+ 2) is a 3-almost prime,
that is to say a positive integer with at most 3 prime factors.

The aim of [6] is to discover almost primes in more exotic locales, and specifically
in orbits of linear groups. We will sketch a proof of the following result.

Theorem 6.2 (Bourgain-Gamburd-Sarnak). Let A and B be two matrices in
SL2(Z) generating a free subgroup. Then there is some r such that this group
contains infinitely many r-almost prime matrices (matrices, the product of whose
entries is r-almost prime).

Henceforth we shall say “almost prime” instead of “r-almost prime for some
r”. We remark that in the specific case we focussed on in the last section, when

A =
(

1 3
0 1

)
and B =

(
1 0
3 1

)
, the theorem as stated follows from classical sieve

theory of the type used to prove Brun’s theorem. Indeed (for example) AnBA =(
9n+ 1 30n+ 3

3 10

)
, and the product of the entries here is 2·32 ·5·(9n+1)·(10n+1),

which will be almost prime for infinitely many n by a simple variant of Brun’s
analysis. The issue here is that the subgroup generated by A and B contains
unipotent elements (in this case both A and B are themselves unipotent).

We start with a (very) elementary discussion of what a sieve is. Suppose one has
a finite set X of integers and that one wishes to find primes or almost primes in X.
The most näıve way to do this would be to try to adapt the sieve of Eratosthenes,
using the inclusion-exclusion principle to compute

#{primes in X} = |X|−|X2|−|X3|−|X5|−· · ·+|X6|+|X10|+|X15|+· · ·−|X30|−. . .
where Xq is the set of elements of X which are divisible by q. Unfortunately it
is well-known that, even when X is an extremely simple set such as {1, . . . , n}, it
is not generally possible to evaluate |Xq| sufficiently accurately to avoid the error
terms in this long sum blowing up. In this simple case just mentioned, for example,
we have |Xq| = bn/qc. However the floor function is rather unpleasant and it is
tempting to write instead |Xq| = n/q + O(1), but then one finds that there are so
many O(1) errors that the sieve of Eratosthenes becomes useless.

By and large, sieve theory is concerned with what it is possible to say about
primes or almost primes in X given “reasonably nice” information about the size
of the sets Xq. Although the sieve of Eratosthenes is bad, other sieves fare rather
better. These other sieves are generally cleverly weighted versions of the sieve of
Eratosthenes, but we will not dwell upon their construction here. A typical example
of “reasonably nice” information about |Xq| would be

|Xq| = β(q)|X|+ rq

for all squarefree q 6 |X|γ , where β(q) is some pleasant multiplicative function and
the error rq is small in the sense that |rq| � |X|1−γ for some γ > 0. For example,
if X = {1, . . . , n} then this is true with β(q) = 1/q and for any γ 6 1.

The fundamental theorem of the combinatorial sieve states, roughly speaking,
that such information is enough to find almost primes in X; in fact, one can even
estimate the number of almost primes. What is meant by “almost prime” – that
is, how many prime factors these numbers will have – depends on how large we can



APPROXIMATE GROUPS AND THEIR APPLICATIONS 19

take γ as well as on the so-called dimension of the sieve, which has to do with the
average size of the quantities β. We will not delay ourselves by expanding upon
the details here. Let us instead refer the reader to [6] for the precise formulation
convenient to the application there and to the book [38] or the unpublished notes
[37] for a more wide-ranging discussion of sieves in general with full proofs.

All we shall take from the preceding discussion is the notion that, given a finite
set X to be sieved in order to locate almost primes, we should be looking for good
asymptotics for the size of the sets |Xq|, q squarefree. Returning to Theorem 6.2,
the first obvious question to answer is that of what the set X to be sieved should
be. The set in which we wish to find almost primes is

A := {x1x2x3x4 :
(
x1 x2

x3 x4

)
∈ 〈A,B〉}.

Now A is of course an infinite set of integers. Rather than truncate in the usual
way and take X = A∩{1, . . . , N}, it is much more natural to truncate in a manner
that respects the group structure more. This we do by taking

X := {x1x2x3x4 :
(
x1 x2

x3 x4

)
∈ Σm(A,B)},

where
Σm(A,B) = {U1U2 . . . Um : Ui ∈ {A,A−1, B,B−1}}

is the set of words of length m in A,A−1, B and B−1 and X is counted with
multiplicity so that |X| = 4m.

Suppose that p is a prime. Then |Xp| is equal to the number of words w ∈
Σm(A,B), counted with multiplicity, which, when reduced modulo p, give rise to a
matrix in SL2(Fp) with at least one zero entry. Writing S ⊆ SL2(Fp) for the set of
such matrices, it is easy to compute that |S| = 2(2p− 1)(p− 1). Now the number
of words w ∈ Σm(A,B) which reduce modulo p to some x ∈ SL2(Fp) is, in the
notation of the last section, precisely 1

n |X|ν
(m)(x), and so

|Xp| =
1
n
|X|

∑
x∈S

ν(m)(x).

However at the end of the last section we saw15 that ν(m)(x) becomes very close
to 1. In fact, in (5.9) we noted the bound ν(m)(x) = 1 +O(ne−cm). Using this we
obtain

|Xp| = β(p)|X|+ rp

where β(p) := 2(2p− 1)/p(p+ 1) and |rp| = |X|1−γ for some γ > 0.

Thus the expansion property of the Cayley graphs (C(πp(G̃), πp(S̃)))p prime gives
exactly the kind of information that can be input into the combinatorial sieve!

There is, however, a very major caveat. What we have just said applies only to
Xp when p is a prime, and for the sieve one must understand Xq when q is a gen-
eral squarefree number. To do this requires the establishment of Theorem 5.1 for
the family (C(πq(G̃), πq(S̃)))q, where now q ranges over all squarefrees and not just
over primes. The broad scheme of the proof is the same, but every single ingredient
must be generalised to the more general setting, starting from the classification of

15Either as a byproduct of the proof, or a consequence, of the expansion property of the family
of Cayley graphs Γp = C(πp(G), πp(S̃)).
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Figure 1. Apollonian circle packing

approximate subrings of Z/qZ. The situation here is more complicated because this
ring will in general have many approximate subrings, namely Z/q′Z with q′|q. One
of the main technical results of [6] (occupying some 20 pages) is the statement that,
very roughly speaking, these are the only approximate subrings of Z/qZ. Although
this is a deeply technical argument of a type that this author would struggle to
summarise meaningfully even to an expert audience, it might be compared with
the 92-page proof [2] of the corresponding assertion without the squarefree assump-
tion on q. Thankfully16 this is not required for the present application. Once the
classification of approximate subrings of Z/qZ for q squarefree is in place a suit-
able analogue of Helfgott’s argument is applied to roughly classify approximate
subgroups of SL2(Z/qZ). Even the statement of this result (Proposition 4.3 in the
paper) is rather technical. Finally, the majority of the argument outlined in the
last section in the case q prime goes over without substantial change.

This concludes our discussion of the proof of Theorem 6.2. To conclude this
survey, we wish to mention a beautiful application, mentioned in the original paper
[6] and in other articles such as [52], of these nonlinear sieving ideas. This has to
do with Apollonian packings such as the one in the attractive image above.

16This is one of the most extraordinarily long and technical arguments the author has ever seen.
The theory of approximate rings when there are many zero-divisors seems to be very difficult.
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For a very pleasant and gentle introduction to Apollonian packings, see [1].
Referring to Figure 1, inside each circle is an integer which represents the curvature
of that circle, or in other words the reciprocal of the radius. Some of the number
theory associated with the integers that arise in this way is discussed in the letter
[53] where, for example, it is shown that infinitely many of these curvatures are
prime and in fact that there are infinitely many touching pairs of circles with prime
curvature.

Now a pleasant exercise in Euclidean geometry gives a theorem of Descartes,
namely that the relation between the four integers a1, a2, a3, a4 inside four mutually
touching circles is given by

(6.1) 2(a2
1 + a2

2 + a2
3 + a2

4) = (a1 + a2 + a3 + a4)2.

Examples of quadruples (a1, a2, a3, a4) which are related in this way and easily
visible in the picture are (13, 21, 24, 124) and (13, 24, 37, 156).

Take a quadruple (C1, C2, C3, C4) of touching circles with curvatures

(a1, a2, a3, a4) = (13, 21, 24, 124).

There is another circle C ′1 tangent to C2, C3 and C4, and it has curvature a′1 = 325.
To find a general relation between a1 and a′1 we may note that a1, a

′
1 are roots of

(6.1) regarded as a quadratic in a1 and thereby obtain the relation

a′1 = −a1 + 2a2 + 2a3 + 2a4.

This may of course be written as
a′1
a2

a3

a4

 =


−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1



a1

a2

a3

a4

 .

That is, if one starts with some fixed vector such as x0 = (13, 21, 24, 124) then one
may obtain another quadruple of curvatures of circles in the Apollonian packing by
applying the matrix

S1 :=


−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

 .

By playing the same game with C ′2, C
′
3 and C ′4 we can make the same assertion

with the matrices

S2 :=


1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1

 ,

S3 :=


1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1
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and

S4 :=


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1

 .

This leads naturally to consideration of the orbit 〈S̃〉x0 ⊆ Z4, where

S̃ := {S1, S2, S3, S4},

every vector in which consists entirely of curvatures of circles in the Apollonian
packing. This puts us in a situation very similar to that studied in Theorem 6.2,
except now we appear to be dealing with a subgroup of GL4(Z) rather than of
SL2(Z).

It turns out, however, that this situation is essentially a two-dimensional one in
disguise, and for this we need to add to the list of areas of mathematics we touch
upon by hinting at Lie theory and special relativity! The matrices S1, S2, S3, S4

belong to SOF (Z), the subgroup of GL4(Z) consisting of 4× 4 matrices with deter-
minant one which preserve the quadratic form F (~x) = 2(x2

1 +x2
2 +x2

3 +x2
4)− (x1 +

x2 + x3 + x4)2 (cf. (6.1)). By the standard theory of quadratic forms (over R) this
is equivalent to the Lorentz form L(~y) = y2

1 + y2
2 + y2

3 − y2
4 , and so we may identify

SOF (R) with the orthogonal group SO(3, 1) preserving this latter form. But it is
very well-known that this group admits SU(2) as a double cover: this is because
the set {~y : L(~y) = −1} may be identified with the set of 2× 2 hermitian matrices
M with determinant 1 via

(y1, y2, y3, y4) 7→
(
y4 + y3 y1 − iy2
y1 + iy2 y4 − y3

)
,

and so any P ∈ SU(2) gives rise to an element of SO(3, 1) via the transformation
M 7→ PMP ∗.

By lifting to this double cover the group 〈S̃〉 can be lifted to a subgroup of
SL2(Z[i]). The proof of Theorem 6.2 goes through with relatively minimal changes,
although once again the group generated by S1, S2, S3 and S4 contains unipotents
and so, if the aim is simply to find infinitely many circles or pairs/quadruples of
touching circles with almost-prime curvatures, more elementary approaches work
just as well. Those elementary approaches do not, however, give sharp quantitative
results, whereas the techniques we have sketched do. To explain one such result,
imagine Figure 1 being generated as follows. Start with the outer circle (which has
curvature −6) and the three largest inner circles, with curvatures 13, 21 and 24.
This is the first generation. The second generation consists of those circles touching
three from the first generation: they have curvatures 28,37,61 and 124. The third
generation contains those new circles touching three circles from either the first or
the second generations: these have curvatures 45, 60, 69, 93, 124, 132, 133, 156,
220, 292, 301 and 325. Carry on in this vein: the nth generation will contain 4·3n−2

circles.

Theorem 6.3 (Bourgain, Gamburd, Sarnak). The number of circles at generation
n which have prime curvature is bounded by C3n/n, for some absolute constant C.

We conclude by remarking that there are some very interesting unsolved ques-
tions connected with Apollonian packings [24]. In that paper the very interesting
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question is raised of whether, in Figure 1, a positive proportion of all positive in-
tegers appear as curvatures. J. Bourgain has recently indicated to me that he and
Elena Fuchs have obtained new information on this question. See also [39] for an
asymptotic formula for the number of circles in the packing of curvature at most X.
It seems that the question of describing this set of integers more precisely remains
open: are they given, from some point on, by finitely many congruence conditions?
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MULTIVARIATE STABLE POLYNOMIALS:
THEORY AND APPLICATIONS

DAVID G. WAGNER

In memoriam Julius Borcea.

Abstract. Univariate polynomials with only real roots – while special – do
occur often enough that their properties can lead to interesting conclusions in
diverse areas. Due mainly to the recent work of two young mathematicians,
Julius Borcea and Petter Brändén, a very successful multivariate generaliza-
tion of this method has been developed. The first part of this paper surveys
some of the main results of this theory of “multivariate stable” polynomials
– the most central of these results is the characterization of linear transfor-
mations preserving stability of polynomials. The second part presents various
applications of this theory in complex analysis, matrix theory, probability and
statistical mechanics, and combinatorics.

1. Introduction.

I have been asked by the AMS to survey the recent work of Julius Borcea and
Petter Brändén on their multivariate generalization of the theory of univariate poly-
nomials with only real roots, and its applications. It is exciting work – elementary
but subtle, and with spectacular consequences. Borcea and Brändén take center
stage but there are many other actors, many of whom I am unable to mention in
this brief treatment. Notably, Leonid Gurvits provides a transparent proof of a
vast generalization of the famous van der Waerden Conjecture.

Space is limited and I have been advised to use “Bourbaki style”, and so this
is an account of the essentials of the theory and a few of its applications, with
complete proofs as far as possible. Some relatively straightforward arguments have
been left as exercises to engage the reader, and some more specialized topics are
merely sketched or even omitted. For the full story and the history and context
of the subject one must go to the references cited, the references they cite, and so
on. The introduction of [4], in particular, gives a good account of the genesis of the
theory.

Here is a brief summary of the contents. Section 2 introduces stable polyno-
mials, gives some examples, presents their elementary properties, and develops
multivariate generalizations of two classical univariate results: the Hermite-Kakeya-
Obreschkoff and Hermite-Biehler Theorems. We also state the Pólya-Schur Theo-
rem characterizing “multiplier sequences”, as this provides an inspiration for much
of the multivariate theory. Section 3 restricts attention to multiaffine stable polyno-
mials: we present a characterization of multiaffine real stable polynomials by means

2000 Mathematics Subject Classification. Primary: 32A60; Secondary: 05A20, 05B35, 15A45,
15A48, 60G55, 60K35.

Research supported by NSERC Discovery Grant OGP0105392.
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of parameterized quadratic inequalities, and characterize those linear transforma-
tions which take multiaffine stable polynomials to stable polynomials. In Section 4
we use parts of the forgoing for Borcea and Brändén’s splendid proof of the Grace-
Walsh-Szegő Coincidence Theorem. In Section 5, the Grace-Walsh-Szegő Theorem
is used to extend the results of Section 3 from multiaffine to arbitrary stable polyno-
mials. This culminates in an amazing multivariate generalization of the Pólya-Schur
Theorem, the proof of which requires the development of a multivariate extension
of the Szasz Principle (which is omitted, regretfully, for lack of space). Section 6
presents Borcea and Brändén’s resolution of some matrix-theoretic conjectures of
Johnson. Section 7 presents the derivation by Borcea, Brändén, and Liggett of neg-
ative association inequalities for the symmetric exclusion process, a fundamental
model in probability and statistical mechanics. Section 8 presents Gurvits’s sweep-
ing generalization of the van der Waerden Conjecture. Finally, Section 9 briefly
mentions a few further topics that could not be included fully for lack of space.

I thank Petter Brändén kindly for his helpful comments on preliminary drafts of
this paper.

2. Stable polynomials.

We use the following shorthand notation for multivariate polynomials. Let [m] =
{1, 2, ...,m}, let x = (x1, ..., xm) be a sequence of indeterminates, and let C[x] be the
ring of complex polynomials in the indeterminates x. For a function α : [m] → N,
let xα = x

α(1)
1 · · ·xα(m)

m be the corresponding monomial. For S ⊆ [m] we also let
xS =

∏
i∈S xi. Similarly, for i ∈ [m] let ∂i = ∂/∂xi, let ∂ = (∂1, ..., ∂m), let

∂α = ∂
α(1)
1 · · · ∂α(m)

m and let ∂S =
∏

i∈S ∂i. The constant functions on [m] with
images 0 or 1 are denoted by 0 and 1, respectively. The x indeterminates are always
indexed by [m].

Let H = {z ∈ C : Im(z) > 0} denote the open upper half of the complex plane,
and H the closure of H in C. A polynomial f ∈ C[x] is stable provided that either
f ≡ 0 identically, or whenever z = (z1, ..., zm) ∈ Hm then f(z) 6= 0. We use S[x]
to denote the set of stable polynomials in C[x], and SR[x] = S[x]∩R[x] for the set
of real stable polynomials in R[x]. (Borcea and Brändén do not consider the zero
polynomial to be stable, but I find the above convention more convenient.)

We rely on the following essential fact at several points.

Hurwitz’s Theorem (Theorem 1.3.8 of [14]). Let Ω ⊆ Cm be a connected open
set, and let (fn : n ∈ N) be a sequence of functions, each analytic and nonvanishing
on Ω, which converges to a limit f uniformly on compact subsets of Ω. Then f is
either nonvanishing on Ω or identically zero.

Consequently, a polynomial obtained as the limit of a convergent sequence of
stable polynomials is itself stable.

2.1. Examples.

Proposition 2.1 (Proposition 2.4 of [1]). For i ∈ [m], let Ai be an n-by-n matrix
and let xi be an indeterminate, and let B be an n-by-n matrix. If Ai is positive
semidefinite for all i ∈ [m] and B is Hermitian then

f(x) = det(x1A1 + x2A2 + · · ·+ xmAm +B)
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is real stable.

Proof. Let f denote the coefficientwise complex conjugate of f . Since Ai = AT
i for

all i ∈ [m], and B = BT, it follows that f = f , so that f ∈ R[x]. By Hurwitz’s
Theorem and a routine perturbation argument, it suffices to prove that f is stable
when each Ai is positive definite. Consider any z = a + ib ∈ Hm, with a,b ∈ Rm

and bi > 0 for all i ∈ [m] (abbreviated to b > 0). Now Q =
∑m

i=1 biAi is positive
definite, and hence has a positive definite square-root Q1/2. Also note that H =∑m

i=1 aiAi +B is Hermitian, and that

f(z) = det(Q) det(iI +Q−1/2HQ−1/2).

Since det(Q) 6= 0, if f(z) = 0 then −i is an eigenvalue of Q−1/2HQ−1/2, contradict-
ing the fact that this matrix is Hermitian. Thus, f(z) 6= 0 for all z ∈ Hm. That is,
f is stable. �

Corollary 2.2. Let Q be an n-by-m complex matrix, and let X = diag(x1, ..., xm)
be a diagonal matrix of indeterminates. Then f(x) = det(QXQ†) is real stable.

Proof. Let Q = (qij), and for j ∈ [m] let Aj denote the n-by-n matrix with hi-th
entry qhjqij . That is, Aj = QjQ

†
j in which Qj denotes the j-th column of Q. Since

each Aj is positive semidefinite and QXQ† = x1A1 + · · · + xmAm, the conclusion
follows directly from Proposition 2.1. �

2.2. Elementary properties. The following simple observation often allows mul-
tivariate problems to be reduced to univariate ones, as will be seen.

Lemma 2.3. A polynomial f ∈ C[x] is stable if and only if for all a,b ∈ Rm with
b > 0, f(a + bt) is stable in S[t].

Proof. Since Hm = {a+bt : a,b ∈ Rm, b > 0, and t ∈ H}, the result follows. �

For f ∈ C[x] and i ∈ [m], let degi(f) denote the degree of xi in f .

Lemma 2.4. These operations preserve stability of polynomials in C[x].
(a) Permutation: for any permutation σ : [m] → [m], f 7→ f(xσ(1), ..., xσ(m)).
(b) Scaling: for c ∈ C and a ∈ Rm with a > 0, f 7→ cf(a1x1, . . . , amxm).
(c) Diagonalization: for {i, j} ⊆ [m], f 7→ f(x)|xi=xj .
(d) Specialization: for a ∈ H, f 7→ f(a, x2, . . . , xm).
(e) Inversion: if deg1(f) = d, f 7→ xd

1f(−x−1
1 , x2, . . . , xm).

(f) Differentiation (or “Contraction”): f 7→ ∂1f(x).

Proof. Parts (a,b,c) are clear. Part (d) is also clear in the case that Im(a) > 0. For
a ∈ R apply part (d) with values in the sequence (a+i2−n : n ∈ N), and then apply
Hurwitz’s Theorem to the limit as n→∞. Part (e) follows from the fact that H is
invariant under the operation z 7→ −z−1. For part (f), let d = deg1(f), and consider
the sequence fn = n−df(nx1, x2, . . . , xm) for all n ≥ 1. Each fn is stable and the
sequence converges to a polynomial, so the limit is stable. Since deg1(f) = d, this
limit is not identically zero. This implies that for all z2, ..., zm ∈ H, the polynomial
g(x) = f(x, z2, ..., zm) ∈ C[x] has degree d. Clearly g′(x) = ∂1f(x, z2, ..., zm). Let
ξ1, ..., ξd be the roots of g(x), so that g(x) = c

∏d
h=1(x− ξh) for some c ∈ C. Since

f is stable, Im(ξh) ≤ 0 for all h ∈ [d]. Now

g′(x)
g(x)

=
d

dx
log g(x) =

d∑
h=1

1
x− ξh

.
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If Im(z) > 0 then Im(1/(z − ξh)) < 0 for all h ∈ [d], so that g′(z) 6= 0. Thus, if
z ∈ Hm then ∂1f(z) 6= 0. That is, ∂1f is stable. �

Of course, by permutation, parts (d,e,f) of Lemma 2.4 apply for any index i ∈ [m]
as well (not just i = 1). Part (f) is essentially the Gauss-Lucas Theorem: the roots
of g′(x) lie in the convex hull of the roots of g(x).

2.3. Univariate stable polynomials. A nonzero univariate polynomial is real
stable if and only if it has only real roots. Let f and g be two such polynomials,
let ξ1 ≤ ξ2 ≤ · · · ≤ ξk be the roots of f , and let θ1 ≤ θ2 ≤ · · · ≤ θ` be the roots of
g. These roots are interlaced if they are ordered so that ξ1 ≤ θ1 ≤ ξ2 ≤ θ2 ≤ · · · or
θ1 ≤ ξ1 ≤ θ2 ≤ ξ2 ≤ · · · . For each i ∈ [`], let ĝi = g/(x− θi). If deg f ≤ deg g and
the roots of g are simple, then there is a unique (a, b1, . . . , b`) ∈ R`+1 such that

f = ag + b1ĝ1 + · · ·+ b`ĝ`.

Exercise 2.5. Let f, g ∈ SR[x] be nonzero and such that fg has only simple roots,
let deg f ≤ deg g, and let θ1 < · · · < θ` be the roots of g. The following are
equivalent:
(a) The roots of f and g are interlaced.
(b) The sequence f(θ1), f(θ2), . . . , f(θ`) alternates in sign (strictly).
(c) In f = ag +

∑`
i=1 biĝi, all of b1, . . . , b` have the same sign (and are nonzero).

TheWronskian of f, g ∈ C[x] is W[f, g] = f ′ · g − f · g′. If f = ag +
∑`

i=1 biĝi as
in Exercise 2.5 then

W[f, g]
g2

=
d

dx

(
f

g

)
=
∑̀
i=1

−bi
(x− θi)2

.

It follows that if f and g are as in Exercise 2.5(a) then W[f, g] is either positive
for all real x, or negative for all real x. Since W[g, f ] = −W[f, g] the condition
that deg f ≤ deg g is immaterial. Any pair f, g with interlacing roots can be
approximated arbitrarily closely by such a pair with all roots of fg simple. It
follows that for any pair f, g with interlacing roots, the Wronskian W[f, g] is either
nonnegative on all of R or nonpositive on all of R.

Nonzero univariate polynomials f, g ∈ SR[x] are in proper position, denoted by
f � g, if W[f, g] ≤ 0 on all of R. For convenience we also let 0 � f and f � 0 for
any f ∈ SR[x]; in particular 0 � 0.

Exercise 2.6. Let f, g ∈ SR[x] be real stable. Then f � g and g � f if and only
if cf = dg for some c, d ∈ R not both zero.

Hermite-Kakeya-Obreschkoff (HKO) Theorem (Theorem 6.3.8 of [14]). Let
f, g ∈ R[x]. Then af + bg ∈ SR[x] for all a, b ∈ R if and only if f, g ∈ SR[x] and
either f � g or g � f .

Hermite-Biehler (HB) Theorem (Theorem 6.3.4 of [14]). Let f, g ∈ R[x].
Then g + if ∈ S[x] if and only if f, g ∈ SR[x] and f � g.

Proofs of HKO and HB. It suffices to prove these when fg has only simple roots.
For HKO we can assume that deg(f) ≤ deg(g). Exercise 2.5 shows that if the

roots of f and g are interlaced then for all a, b ∈ R, the roots of g and af + bg
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are interlaced, so that af + bg is real stable. The converse is trivial if cf = dg for
some c, d ∈ R not both zero, so assume otherwise. From the hypothesis, both f
and g are real stable. If there are z0, z1 ∈ H for which Im(f(z0)/g(z0)) < 0 and
Im(f(z1)/g(z1)) > 0, then for some λ ∈ [0, 1] the number zλ = (1−λ)z0+λz1 is such
that Im(f(zλ)/g(zλ)) = 0. Thus f(zλ) − ag(zλ) = 0 for some real number a ∈ R.
Since f − ag is stable (by hypothesis) and zλ ∈ H, this implies that f − ag ≡ 0, a
contradiction. Thus Im(f(z)/g(z)) does not change sign for z ∈ H. This implies
Exercise 2.5(c): all the bi have the same sign (consider f/g at the points θi + iε for
ε > 0 approaching 0). Thus, the roots of f and g are interlaced.

For HB, let p = g + if . Considering ip = −f + ig if necessary, we can assume
that deg f ≤ deg g. If f � g then Exercise 2.5(c) implies that Im(f(z)/g(z)) ≤ 0
for all z ∈ H, so that g + if is stable. For the converse, let p(x) = c

∏d
i=1(x− ξi),

so that Im(ξi) ≤ 0 for all i ∈ [d]. Now |z − ξi| ≥ |z − ξi| for all z ∈ H and i ∈ [d],
so that |p(z)| ≥ |p(z)| for all z ∈ H. For any z ∈ H with f(z) 6= 0 we have∣∣∣∣ g(z)f(z)

+ i
∣∣∣∣ ≥ ∣∣∣∣ g(z)f(z)

+ i
∣∣∣∣ = ∣∣∣∣ g(z)f(z)

− i
∣∣∣∣ ,

and it follows that Im(g(z)/f(z)) ≥ 0 for all z ∈ H with f(z) 6= 0. Since fg has
simple roots it follows that g(x) + yf(x) is stable in S[x, y]. By contraction and
specialization, both f and g are real stable. By scaling and specialization, af + bg
is stable for all a, b ∈ R. By HKO, the roots of f and g are interlaced. Since
Im(f(z)/g(z)) ≤ 0 for all z ∈ H, all the bi in Exercise 2.5(c) are positive, so that
W[f, g] is negative on all of R: that is f � g. �

For λ : N → R, let Tλ : R[x] → R[x] be the linear transformation defined by
Tλ(xn) = λ(n)xn and linear extension. A multiplier sequence (of the first kind) is
such a λ for which Tλ(f) is real stable whenever f is real stable. Pólya and Schur
characterized multiplier sequences as follows.

Pólya-Schur Theorem (Theorem 1.7 of [4]). Let λ : N → R. The following are
equivalent:
(a) λ is a multiplier sequence.
(b) Fλ(x) =

∑∞
n=0 λ(n)xn/n! is an entire function which is the limit, uniformly on

compact sets, of real stable polynomials with all roots of the same sign.
(c) Either Fλ(x) or Fλ(−x) has the form

Cxneax
∞∏

j=1

(1 + αjx),

in which C ∈ R, n ∈ N, a ≥ 0, all αj ≥ 0, and
∑∞

j=1 αj is finite.
(d) For all n ∈ N, the polynomial Tλ((1 + x)n) is real stable with all roots of the
same sign.

One of the main results of Borcea and Brändén’s theory is a great generalization
of the Pólya-Schur Theorem – a characterization of all stability preservers: linear
transformations T : C[x] → C[x] such that T (f) is stable whenever f is stable.
(Also the analogous characterization of real stability preservers.) This is discussed
in some detail in Section 5.3.
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2.4. Multivariate analogues of the HKO and HB Theorems. By analogy
with the univariate HB Theorem, polynomials f, g ∈ R[x] are said to be in proper
position, denoted by f � g, when g+ if ∈ S[x]. (As will be seen, this implies that
f, g ∈ SR[x].) Thus, the multivariate analogue of Hermite-Biehler is a definition,
not a theorem.

Proposition 2.7 (Lemma 1.8 and Remark 1.3 of [5]). Let f, g ∈ C[x].
(a) If f, g ∈ R[x] then f � g if and only if g + yf ∈ SR[x, y].
(b) If 0 6≡ f ∈ S[x] then g + yf ∈ S[x, y] if and only if for all z ∈ Hm,

Im
(
g(z)
f(z)

)
≥ 0.

Proof. If g + yf ∈ SR[x, y] then g + if ∈ S[x], by specialization. Conversely,
assume that h = g + if ∈ S[x] with f, g ∈ R[x], and let z = a + ib with a, b ∈ R
and b > 0. By Lemma 2.3, for all a,b ∈ Rm with b > 0 we have h(a + bt) ∈ S[t].
By HB, f̂(t) = f(a + bt) and ĝ(t) = g(a + bt) are such that f̂ � ĝ. By HKO,
cf̂ + dĝ ∈ SR[t] for all c, d ∈ R. By HKO again, the roots of bf̂ and of ĝ + af̂ are
interlaced. Since W [bf̂ , ĝ + af̂ ] = bW [f̂ , ĝ] ≤ 0 on R, it follows that bf̂ � ĝ + af̂ .
Finally, by HB again, ĝ + (a+ ib)f̂ ∈ S[t]. Since this holds for all a,b ∈ Rm with
b > 0, Lemma 2.3 implies that g+(a+ib)f ∈ S[x]. Since this holds for all a, b ∈ R
with b > 0, g + yf ∈ S[x, y]. This proves part (a).

For part (b), first let g+yf be stable. By specialization, g is also stable. If g ≡ 0
then there is nothing to prove. Otherwise, consider any z ∈ Hm, so that f(z) 6= 0
and g(z) 6= 0. There is a unique solution z ∈ C to g(z) + zf(z) = 0, and since
g + yf is stable, Im(z) ≤ 0. Hence, Im(g(z)/f(z)) = Im(−z) ≥ 0. This argument
can be reversed to prove the converse implication. �

Exercise 2.8 (Corollary 2.4 of [4]). S[x] = {g + if : f, g ∈ SR[x] and f � g}.

Here is the multivariate HKO Theorem of Borcea and Brändén.

Theorem 2.9 (Theorem 1.6 of [4]). Let f, g ∈ R[x]. Then af + bg ∈ SR[x] for all
a, b ∈ R if and only if f, g ∈ SR[x] and either f � g or g � f .

Proof. First assume that f � g, and let a, b ∈ R with b > 0. By Proposition
2.7(a), g + yf ∈ SR[x, y]. By scaling and specialization, bg + (a + i)f ∈ S[x]. By
Proposition 2.7(a) again, f � (af + bg). Thus af + bg ∈ SR[x] for all a, b ∈ R.
The case that g � f is similar.

Conversely, assume that af + bg ∈ SR[x] for all a, b ∈ R. Let a,b ∈ Rm with
b > 0, and let f̂(t) = f(a+bt) and ĝ(t) = g(a+bt). By Lemma 2.3, af̂+bĝ ∈ SR[t]
for all a, b ∈ R. By HKO, for each a,b ∈ Rm with b > 0, either f̂ � ĝ or ĝ � f̂ .

If f̂ � ĝ for all a,b ∈ Rm with b > 0, then by HB, ĝ+if̂ ∈ S[t] for all a,b ∈ Rm

with b > 0. Thus g + if ∈ S[x] by Lemma 2.3, which is to say that f � g (by
definition). Similarly, if ĝ � f̂ for all a,b ∈ Rm with b > 0 then g � f .

It remains to consider the case that f(a0 +b0t) � g(a0 +b0t) for some a0,b0 ∈
Rm with b0 > 0, and g(a1 + b1t) � f(a1 + b1t) for another a1,b1 ∈ Rm with
b1 > 0. For 0 ≤ λ ≤ 1, let aλ = (1− λ)a0 + λa1 and bλ = (1− λ)b0 + λb1. Since
roots of polynomials move continuously as the coefficients are varied continuously,
there is a value 0 ≤ λ ≤ 1 for which both f(aλ + bλt) � g(aλ + bλt) and g(aλ +
bλt) � f(aλ +bλt). From Exercise 2.6, it follows that cf(aλ +bλt) = dg(aλ +bλt)
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for some c, d ∈ R not both zero. Now h = cf − dg ∈ S[x] by hypothesis, and since
h(aλ + bλt) ≡ 0 identically, it follows that h(aλ + ibλ) = 0. Since bλ > 0 and h is
stable, this implies that h ≡ 0, so that cf = dg in S[x]. In this case, both f � g
and g � f hold. �

For f, g ∈ C[x] and i ∈ [m], let Wi[f, g] = ∂if · g− f · ∂ig be the i-th Wronskian
of the pair (f, g).

Corollary 2.10 (Theorem 1.9 of [5]). Let f, g ∈ R[x]. The following are equivalent:
(a) g + if is stable in S[x], that is f � g;
(b) g + yf is real stable in SR[x, y];
(c) af+bg ∈ SR[x] for all a, b ∈ R, and Wi[f, g](a) ≤ 0 for all i ∈ [m] and a ∈ Rm.

Proof. Proposition 2.7(a) shows that (a) and (b) are equivalent.
If (a) holds then Theorem 2.9 implies that af + bg ∈ SR[x] for all a, b ∈ R. To

prove the rest of (c), let i ∈ [m] and a ∈ Rm, and let δi ∈ Rm be the unit vector
with a one in the i-th position. Since f � g, for any b ∈ Rm with b > 0 we have
f(a + (b + δi)t) � g(a + (b + δi)t) in SR[t], from Proposition 2.7(a) and Lemma
2.3. By the Wronskian condition for univariate polynomials in proper position,

W[f(a + (b + δi)t), g(a + (b + δi)t)] ≤ 0

for all t ∈ R. Taking the limit as b → 0 and evaluating at t = 0 yields

Wi[f, g](a) = W[f(a + δit), g(a + δit)]|t=0 ≤ 0,

by continuity. Thus (a) implies (c).
To prove that (c) implies (b), let a,b ∈ Rm with b = (b1, ..., bm) > 0, and let

a, b ∈ R with b > 0. By Lemma 2.3, to show that g + yf ∈ SR[x, y] it suffices to
show that g(a + bt) + (a+ ib)f(a + bt) ∈ S[t]. From (c) it follows that p = g+ af
and q = bf are such that αp+ βq ∈ SR[x] for all α, β ∈ R. By Theorem 2.9, either
p� q or q � p. Now

W[q(a + bt), p(a + bt)] = bW[f(a + bt), g(a + bt)]

= b

m∑
i=1

biWi[f, g](a + bt) ≤ 0,

by the Wronskian condition in part (c). Thus q(a + bt) � p(a + bt), so that
p(a+bt)+iq(a+bt) ∈ S[t]. Since p+iq = g+(a+ib)f , this shows that (c) implies
(b). �

Exercise 2.11 (Corollary 1.10 of [5]). Let f, g ∈ SR[x] be real stable. Then f � g
and g � f if and only if cf = dg for some c, d ∈ R not both zero.

Proposition 2.12 (Lemma 3.2 of [5]). Let V be a K-vector subspace of K[x], with
either K = R or K = C.
(a) If K = R and V ⊆ SR[x] then dimR V ≤ 2.
(b) If K = C and V ⊆ S[x] then dimC V ≤ 1.

Proof. For part (a), suppose to the contrary that f, g, h ∈ V are linearly indepen-
dent over R (and hence not identically zero). By Theorem 2.9, either f � g or
g � f , and similarly for the other pairs {f, h} and {g, h}. Renaming these polyno-
mials as necessary, we may assume that f � h and h� g. Now, for all λ ∈ [0, 1] let
pλ = (1− λ)f + λg, and note that each pλ 6≡ 0. By Theorem 2.9, for each λ ∈ [0, 1]
either h � pλ or pλ � h. Since p0 = f � h and h � g = p1, by continuity of
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the roots of {pλ : λ ∈ [0, 1]} there is a λ ∈ [0, 1] such that h � pλ and pλ � h.
But then, by Exercise 2.11, either {f, g} is linearly dependent or h is in the span
of {f, g}, contradicting the supposition.

For part (b), let Re(V ) = {Re(h) : h ∈ V }. Then Re(V ) is a real subspace of
SR[x], so that dimR Re(V ) ≤ 2 by part (a). If dimR Re(V ) ≤ 1 then dimC V ≤ 1.
In the remaining case let {p, q} be a basis of Re(V ) with f = p + iq ∈ V . By
Corollary 2.10, Wi[q, p](a) ≤ 0 for all i ∈ [m] and a ∈ Rm. Since p and q are not
linearly dependent, there is an index k ∈ [m] such that Wk[q, p] 6≡ 0.

Consider any g ∈ V . There are reals a, b, c, d ∈ R such that

g = (ap+ bq) + i(cp+ dq).

Since g is stable, Wk[cp+ dq, ap+ bq](a) = (ad− bc)Wk[q, p](a) ≤ 0 for all a ∈ Rm.
Since Wk[q, p] 6≡ 0, it follows that ad− bc ≥ 0. Now, for any v, w ∈ R, g+(v+iw)f
is in V . Since

g + (v + iw)f = (a+ v)p+ (b− w)q + i((c+ w)p+ (d+ v)q),

this argument shows that H = (a+ v)(d+ v)− (b−w)(c+w) ≥ 0 for all v, w ∈ R.
But

4H = (2v + a+ d)2 + (2w + c− b)2 − (a− d)2 − (b+ c)2,

so that H ≥ 0 for all v, w ∈ R if and only if a = d and b = −c. This implies that
g = (a+ ic)f , so that dimC V = 1. �

3. Multiaffine stable polynomials.

A polynomial f is multiaffine if each indeterminate occurs at most to the first
power in f . For a set S of polynomials, let SMA denote the set of multiaffine
polynomials in S. For multiaffine f ∈ C[x]MA and i ∈ [m] we use the “ultra-
shorthand” notation f = f i + xifi in which f i = f |xi=0 and fi = ∂if . This
notation is extended to multiple distinct indices in the obvious way – in particular,

f = f ij + xif
j
i + xjf

i
j + xixjfij .

3.1. A criterion for real stability. For f ∈ C[x] and {i, j} ⊆ [m], let

∆ijf = ∂if · ∂jf − f · ∂i∂jf.

Notice that for f ∈ C[x]MA,

∆ijf = f j
i fj − f jfij = Wi[f j , fj ] = −Wi[fj , f

j ],

and

∆ijf = f j
i f

i
j − f ijfij .

Theorem 3.1 (Theorem 5.6 of [8] and Theorem 3 of [16]). Let f ∈ R[x]MA be
multiaffine. The following are equivalent:
(a) f is real stable.
(b) For all {i, j} ⊆ [m] and all a ∈ Rm, ∆ijf(a) ≥ 0.
(c) Either m = 1, or there exists {i, j} ⊆ [m] such that fi, f i, fj and f j are real
stable, and ∆ijf(a) ≥ 0 for all a ∈ Rm.
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Proof. To see that (a) implies (b), fix {i, j} ⊆ [m]. Proposition 2.7(a) shows
that fj � f j , and from the calculation above and Corollary 2.10, it follows that
∆ijf(a) = −Wi[fj , f

j ](a) ≥ 0 for all a ∈ Rm.
We show that (b) implies (a) by induction on m, the base case m = 1 being

trivial. For the induction step let f be as in part (b), let a ∈ R, and let g =
f |xm=a. For all {i, j} ⊆ [m − 1] and a ∈ Rm−1, ∆ijg(a) = ∆ijf(a, a) ≥ 0. By
induction, g = fm + afm is real stable for all a ∈ R; it follows that afm + bfm ∈
SR[x1, . . . , xm−1] for all a, b ∈ R. Furthermore, for all j ∈ [m − 1] and a ∈ Rm−1,
Wj [fm, f

m](a) = −∆jmf(a, 1) ≤ 0. This verifies condition (c) of Corollary 2.10
for the pair (fm, f

m), and it follows that f = fm + xmfm ∈ SR[x], completing the
induction.

It is clear that (a) and (b) imply (c) – we show that (c) implies (b) below. This
is clear if m ≤ 2, so assume that m ≥ 3. To begin with, let {h, i, j} ⊆ [m] be
three distinct indices, and consider ∆ijf as a polynomial in xh. That is, ∆ijf =
Ahijx

2
h +Bhijxh + Chij in which

Ahij = f j
hif

i
hj − f ij

h fhij = ∆ijfh,

Bhij = f j
hif

hi
j − f ij

h f
h
ij + fhj

i f i
hj − fhijfhij , and

Chij = fhj
i fhi

j − fhijfh
ij = ∆ijf

h.

If ∆ijf(a) ≥ 0 for all a ∈ Rm then this quadratic polynomial in xh:

∆ijf(a1, . . . , ah−1, xh, ah+1, . . . , am)

has a nonpositive discriminant for all a ∈ Rm. That is, Dhij = B2
hij − 4AhijChij is

such that Dhij(a) ≤ 0 for all a ∈ Rm.
It is a surprising fact that as a polynomial in {xk : k ∈ [m] r {h, i, j}}, Dhij is

invariant under all six permutations of its indices, as is seen by direct calculation:

Dhij = (f ij
h f

h
ij)

2 + (fhj
i f i

hj)
2 + (fhi

j f j
hi)

2 + (fhijf
hij)2

−2(f ij
h f

h
ijf

hj
i f i

hj + fhj
i f i

hjf
hi
j hj

hi + fhi
j f j

hif
ij
h f

h
ij)

−2(f ij
h f

h
ij + fhj

i f i
hj + fhi

j f j
hi)f

hijfhij

+4fh
ijf

i
hjf

j
hif

hij + 4f ij
h f

hj
i fhi

j fhij .

Now for the proof that (c) implies (b) when m ≥ 3. Consider any h ∈ [m]r{i, j}.
Then

∆hif = Ajhix
2
j +Bjhixj + Cjhi

has discriminant Djhi = Dhij . Since fj and f j are real stable, we have Ajhi(a) =
∆hifj(a) ≥ 0 and Cjhi(a) = ∆hif

j(a) ≥ 0 for all a ∈ Rm. Since ∆ijf(a) ≥ 0 for
all a ∈ Rm it follows that Djhi(a) = Dhij(a) ≤ 0 for all a ∈ Rm. It follows that
∆hif(a) ≥ 0 for all a ∈ Rm. (Note that if B2 − 4AC ≤ 0 and either A = 0 or
C = 0, then B = 0.) A similar argument using the fact that fi and f i are real
stable shows that ∆hjf(a) ≥ 0 for all a ∈ Rm.

It remains to show that ∆hkf(a) ≥ 0 for all a ∈ Rm when {h, k} is disjoint from
{i, j}. We have seen that ∆hif(a) ≥ 0 for all a ∈ Rm, and we know that both fi

and f i are real stable. The argument above applies once more: ∆hif(a) ≥ 0 for all
a ∈ Rm, so that Dihk(a) = Dkhi(a) ≤ 0 for all a ∈ Rm, and then since Aihk(a) ≥ 0
and Cihk(a) ≥ 0 for all a ∈ Rm it follows that ∆hkf(a) ≥ 0 for all a ∈ Rm. Thus
(c) implies (b). �
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3.2. Linear transformations preserving stability – multiaffine case.

Lemma 3.2 (Lieb-Sokal Lemma, Lemma 2.1 of [5]). Let g(x)+ yf(x) ∈ S[x, y] be
stable and such that degi(f) ≤ 1. Then g − ∂if ∈ S[x] is stable.

Proof. Since g is stable (by specialization to y = 0), there is nothing to prove if
∂if ≡ 0 identically, so assume otherwise (and hence that f 6≡ 0). By permutation
we can assume that i = 1. Since f is stable and z1, z ∈ H imply that z1− z−1 ∈ H,
it follows that

yf(x1 − y−1, x2, ..., xm) = −∂1f(x) + yf(x)
is stable. Proposition 2.7(b) implies that for all z ∈ Hm,

Im
(
g(z)− ∂1f(z)

f(z)

)
= Im

(
g(z)
f(z)

)
+ Im

(
−∂1f(z)
f(z)

)
≥ 0.

Thus, by Proposition 2.7(b) again, g − ∂1f + yf is stable. Specializing to y = 0
shows that g − ∂1f is stable. �

Exercise 3.3 (Lemma 3.1 of [5]). Let f ∈ C[x]MA and w ∈ Hm. Then for all ε > 0
sufficiently small, (x+w)[m] + εf(x) is stable. (Here (x+w)[m] =

∏m
i=1(xi +wi).)

For a linear transformation T : C[x]MA → C[x] of multiaffine polynomials, define
the algebraic symbol of T to be the polynomial

T ((x + y)[m]) = T

(
m∏

i=1

(xi + yi)

)
=
∑

S⊆[m]

T (xS)y[m]rS

in C[x1, . . . , xm, y1, . . . , ym] = C[x,y].

Theorem 3.4 (Theorem 1.1 of [5]). Let T : C[x]MA → C[x] be a linear transfor-
mation. Then T maps S[x]MA into S[x] if and only if either
(a) T (f) = η(f) · p for some linear functional η : C[x]MA → C and p ∈ S[x], or
(b) the polynomial T ((x + y)[m]) is stable in S[x,y].

Proof. First, assume (b) that T ((x + y)[m]) ∈ S[x,y] is stable. By inversion, it
follows that y[m]T ((x− y−1)[m]) is also stable. Thus, if f ∈ S[w1, ..., wm] is stable
then

y[m]T ((x− y−1)[m])f(w) =
∑

S⊆[m]

T (xS)(−y)Sf(w)

is stable. If f is also multiaffine then repeated application of the Lieb-Sokal Lemma
3.2 (replacing yi by −∂/∂wi for i ∈ [m]) shows that∑

S⊆[m]

T (xS)
∂S

∂wS
f(w)

is stable. Finally, specializing to w = 0 shows that T (f(x)) is stable. Thus, the
linear transformation T maps S[x]MA into S[x]. This is clearly also the case if (a)
holds.

Conversely, assume that T maps S[x]MA into S[x]. Then for any w ∈ Hm,
(x + w)[m] ∈ S[x]MA, so that T ((x + w)[m]) ∈ S[x].

First, assume that there is a w ∈ Hm for which T ((x + w)[m]) ≡ 0 identically.
For any f ∈ C[x]MA let ε > 0 be as in Exercise 3.3. Then εT (f) = T ((x+w)[m]+εf)
is stable, so that T (f) is stable. Thus, the image of C[x]MA under T is a C-subspace
of S[x]. By Proposition 2.12(b), T has the form of case (a).
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Secondly, if T ((x + w)[m]) 6≡ 0 for all w ∈ Hm then, since each of these polyno-
mials is in S[x], we have T ((x + w)[m])|x=z 6= 0 for all z ∈ Hm and w ∈ Hm. This
shows that T ((x + y)[m])) is stable in S[x,y], which is the form of case (b). �

Theorem 3.4 has a corresponding real form – the proof is completely analogous.

Theorem 3.5 (Theorem 1.2 of [5]). Let T : R[x]MA → R[x] be a linear transfor-
mation. Then T maps SR[x]MA into SR[x] if and only if either
(a) T (f) = η(f) · p + ξ(f) · q for some linear functionals η, ξ : R[x]MA → R and
p, q ∈ SR[x] such that p� q, or
(b) the polynomial T ((x + y)[m]) is real stable in SR[x,y], or
(c) the polynomial T ((x− y)[m]) is real stable in SR[x,y].

Proof. Exercise 3.6. �

4. The Grace-Walsh-Szegő Coincidence Theorem.

Let f ∈ C[x] be a univariate polynomial of degree at most m, and let x =
(x1, ..., xm) as usual. For 0 ≤ j ≤ m, the j-th elementary symmetric function of x
is

ej(x) =
∑

1≤i1<···<ij≤m

xi1 · · ·xij =
∑

S⊆[m]: |S|=j

xS .

The m-th polarization of f is the polynomial obtained as the image of f under the
linear transformation Polm defined by xj 7→

(
m
j

)−1
ej(x) for all 0 ≤ j ≤ m, and lin-

ear extension. In other words, Polmf is the unique multiaffine polynomial in C[x]MA

that is invariant under all permutations of [m] and such that Polmf(x, ..., x) = f(x).
A circular region is a nonempty subset A of C that is either open or closed, and
which is bounded by either a circle or a straight line.

Theorem 4.1 (Grace-Walsh-Szegő, Theorem 3.4.1b of [14]). Let f ∈ C[x] have
degree at most m and let A be a circular region. If either deg(f) = m or A is
convex, then for every z ∈ Am there exists z ∈ A such that Polmf(z) = f(z).

Figure 1 illustrates the Grace-Walsh-Szegő (GWS) Theorem for the polynomial
f(x) = x5 + 10x2 + 1. The black dots mark the solutions to f(x) = 0. Any
permutation of the red (grey) dots is a solution to Pol5f(x1, ..., x5) = 0. By GWS,
any circular region containing all the red dots must contain at least one of the black
dots. The figure indicates the boundaries of several circular regions for which this
condition is met.

The proof of GWS in this section is adapted from Borcea and Brändén [6].

4.1. Reduction to the case of stable polynomials. First of all, it suffices to
prove GWS for open circular regions, since a closed circular region is the intersection
of all the open circular regions which contain it. Second, it suffices to show that
for any g ∈ C[x] of degree at most m, if deg(g) = m or A is convex, and z ∈ Am is
such that Polmg(z) = 0, then there exists z ∈ A such that g(z) = 0. This implies
the stated form of GWS by applying this special case to g(x) = f(x) − c, where
c = Polmf(z). Stated otherwise, it suffices to show that if f(z) 6= 0 for all z ∈ A

then Polmf(z) 6= 0 for all z ∈ Am (provided that either deg(f) = m or A is convex).
Let M be the set of Möbius transformations z 7→ φ(z) = (az + b)/(cz + d) with

a, b, c, d ∈ C and ab−cd = ±1. Then M with the operation of functional composition
is a group of conformal transformations of the Riemann sphere Ĉ = C ∪ {∞},
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Figure 1. Illustration of the Grace-Walsh-Szegő Theorem.

and it acts simply transitively on the set of all ordered triples of distinct points
of Ĉ. Consequently, for any open circular region A there is a φ ∈ M such that
φ(H) = {φ(z) : z ∈ H} = A. We henceforth regard circular regions as subsets of
Ĉ. Note that an open circular region A is convex if and only if it does not contain
∞. (The point ∞ is on the boundary of any open half-plane.) In this case, if
φ(z) = (az + b)/(cz + d) is such that φ(H) = A then cz + d 6= 0 for all z ∈ H.

Given 0 6≡ f ∈ C[x] of degree at most m, consider the polynomial f̃(x) =
(cx + d)mf((ax + b)/(cx + d)). If either deg(f) = m or A is convex, then f is
nonvanishing on A if and only if f̃(z) is nonvanishing on H. Also,

Polmf̃(x) = Polmf(φ(x1), ..., φ(xm)) ·
m∏

i=1

(cxi + d).

Thus, to prove GWS it suffices to prove the following lemma.

Lemma 4.2. Let f ∈ C[x] be a univariate polynomial of degree at most m. Then
Polmf is stable if and only if f is stable.

Clearly, diagonalization implies that if Polmf is stable then f is stable, so only the
converse implication needs proof. This is accomplished in the following two easy
steps.
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4.2. Partial symmetrization. The group S(m) of all permutations σ : [m] → [m]
acts on C[x] by the rule σ(f)(x1, ..., xm) = f(xσ(1), ..., xσ(m)). Notice that

σ(xα) =
m∏

i=1

x
α(i)
σ(i) =

m∏
i=1

x
α◦σ−1(i)
i = xα◦σ−1

.

For {i, j} ⊆ [m], let τij be the transposition that exchanges i and j and fixes all
other elements of [m].

Lemma 4.3. Let 0 ≤ λ ≤ 1 and {i, j} ⊆ [m], and let T (λ)
ij = (1 − λ) + λτij. If

f ∈ S[x]MA is stable and multiaffine then T (λ)
ij f ∈ S[x]MA is stable and multiaffine.

Proof. If f is multiaffine then (1 − λ)f + λτij(f) is also multiaffine. We apply
Theorem 3.4 to show that T = T

(λ)
ij preserves stability of multiaffine polynomials.

By permutation we can assume that {i, j} = {1, 2}. The algebraic symbol of T is

T ((x + y)[m]) = T ((x1 + y1)(x2 + y2)) ·
m∏

i=3

(xi + yi).

Clearly, this is stable if and only if the same is true of T ((x1+y1)(x2+y2)). Exercise
4.4 completes the proof. �

Exercise 4.4. Use the results of Sections 2.4 or 3.1 to show that for 0 ≤ λ ≤ 1,
the polynomial

x1x2 + ((1− λ)x1 + λx2)y2 + (λx1 + (1− λ)x2)y1 + y1y2

is real stable.

4.3. Convergence to the polarization. Let 0 6≡ f(x) ∈ S[x] be a univariate
stable polynomial of degree at most m: say f(x) = c(x − ξ1) · · · (x − ξn) in which
c 6= 0, n ≤ m, and ξi 6∈ H for all i ∈ [n]. Then the polynomial F0 ∈ C[x] defined by

F0(x1, ..., xm) = c(x1 − ξ1) · · · (xn − ξn)

is multiaffine and stable, and F0(x, ..., x) = f(x). Let Σ = ({ik, jk} : k ∈ N)
be a sequence of two-element subsets of [m], and for each k ∈ N let Tk = T

(1/2)
ikjk

and define Fk+1 = Tk(Fk). By induction using Lemma 4.3, each Fk ∈ S[x]MA is
multiaffine and stable, and Fk(x, ..., x) = f(x) for all k ∈ N. We will construct such
a sequence Σ for which (Fk : k ∈ N) converges to Polmf .

Let P ∈ C[x]MA be multiaffine, say P (x) =
∑

S⊆[m] c(S)xS . For {i, j} ⊆ [m] let

ωij(P ) =
∑

S⊆[m]

|c(S)− c(τij(S))|

be the ij-th imbalance of P , and let ||P || =
∑

{i,j}⊆[m] ωij(P ) be the total imbalance
of P .

Exercise 4.5. (a) Let (Pk : k ∈ N) be polynomials in C[x]MA for which there is a
p ∈ C[x] such that Pk(x, ..., x) = p(x) for all k ∈ N. If ||Pk|| → 0 as k → 0, then
(Pk : k ∈ N) converges to a limit P ∈ C[x]MA, and ||P || = 0.
(b) For P ∈ C[x]MA, ||P || = 0 if and only if P is invariant under all permutations
of [m]. Thus, in part (a) the limit is P = Polmp.
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Exercise 4.6. Let P ∈ C[x]MA, let {i, j} ⊆ [m], and let Q = T
(1/2)
ij P .

(a) Then ωij(Q) = 0.
(b) If h ∈ [m]r{i, j} then ωhi(Q) ≤ (ωhi(P )+ωhj(P ))/2, and similarly for ωhj(Q).
(c) If {h, k} ⊆ [m] r {i, j} then ωhk(Q) = ωhk(P ).
(d) Consequently, ||Q|| ≤ ||P || − ωij(P ).

Now we choose the sequence Σ = ({ik, jk} : k ∈ N) as follows: for each k ∈ N,
{ik, jk} ⊆ [m] is any pair of indices {i, j} for which ωij(Fk) attains its maximum
value. Then ωikjk

(Fk) ≥
(
m
2

)−1||Fk||, so that by Exercise 4.6(d) and induction on
k ∈ N,

||Fk+1|| ≤

(
1−

(
m

2

)−1
)
||Fk|| ≤

(
1−

(
m

2

)−1
)k+1

||F0||.

Thus, by Exercise 4.5, Fk converges to Polmf , the m-th polarization of f . Finally,
since each Fk is stable (and the limit is a polynomial), Hurwitz’s Theorem implies
that Polmf is stable. This completes the proof of Lemma 4.2, and hence of Theorem
4.1.

5. Polarization arguments and stability preservers.

For κ ∈ Nm and a set S ⊆ C[x] of polynomials, let S≤κ be the set of all f ∈ S

such that degi(f) ≤ κ(i) for all i ∈ [m]. Let

I(κ) = {(i, j) : i ∈ [m] and j ∈ [κ(i)]}

and let u = {uij : (i, j) ∈ I(κ)} be indeterminates. For f ∈ C[x]≤κ, Let Pol(i)κ(i)f

denote the κ(i)-th polarization of xi in f : this is the image of f under the linear
transformation Pol(i)κ(i) defined by xj

i 7→
(
κ(i)

j

)−1
ej(ui1, ..., uiκ(i)) for each 0 ≤ j ≤

κ(i), and linear extension. Finally, the κ-th polarization of f is

Polκf = Pol(m)
κ(m) ◦ · · · ◦ Pol(1)κ(1)f.

This defines a linear transformation Polκ : C[x]≤κ → C[u]MA.

5.1. The real stability criterion revisited.

Proposition 5.1. Let κ ∈ Nm and f ∈ C[x]≤κ. Then Polκf is stable if and only
if f is stable.

Proof. Diagonalization implies that if Polκf is stable then f is stable, so only the
converse implication needs proof. Assume that f is stable, and let zij ∈ H for
(i, j) ∈ I(κ). By induction on m, repeated application of GWS shows that there
are z = (z1, . . . , zm) ∈ Hm such that

Polκf(zij : (i, j) ∈ I(κ)) = f(z).

Since f is stable it follows that Polκf is stable. �

If f ∈ R[x]≤κ then Theorem 3.1 applies to Polκf . Thus, Proposition 5.1 boot-
straps the real stability criterion from multiaffine to arbitrary polynomials. This is
a typical application of the GWS Theorem.
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5.2. Linear transformations preserving stability – polynomial case.

Theorem 5.2 (Theorem 1.1 of [5]). Let κ ∈ Nm, and let T : C[x]≤κ → C[x] be a
linear transformation. Then T maps S[x]≤κ into S[x] if and only if either
(a) T (f) = η(f) · p for some linear functional η : C[x]≤κ → C and p ∈ S[x], or
(b) the polynomial T ((x + y)κ) is stable in S[x,y].

Proof. Let u = {uij : (i, j) ∈ I(κ)}, and define a linear transformation T̃ :
C[u]MA → C[x] as follows. For every A ⊆ I(κ), define α(A) : [m] → N by
putting α(A, i) = |{j ∈ [κ(i)] : (i, j) ∈ A}| for each i ∈ [m]. Then for each
A ⊆ I(κ) define T̃ (uA) = T (xα(A)), and extend this linearly to all of C[u]MA. Let
∆ : C[u]MA → C[x] be the diagonalization operator defined by ∆(uij) = xi for all
(i, j) ∈ I(κ), extended algebraically.

Notice that T = T̃ ◦Polκ, and that T̃ = T ◦∆. By Proposition 5.1 (and Lemma
2.4), it follows that T preserves stability if and only if T̃ preserves stability. This
is equivalent to one of two cases in Theorem 3.4.

In case (a), if T̃ = p · η̃ for some p ∈ S[x] and linear functional η̃ : C[y]MA → C
then T = p · (η ◦ Polκ) is also in case (a). Conversely, if T is in case (a) then the
same is true of T̃ , by construction.

In case (b), let Pol(y)
κ : C[y]≤κ → C[v]MA denote the κ-th polarization of the y

variables. The symbols of T and T̃ are related by

T̃ ((u + v)I(κ)) = (T ◦∆)((u + v)I(κ)) = Pol(y)
κ T ((x + y)κ),

and Proposition 5.1 shows that T is in case (b) if and only if T̃ is in case (b). �

5.3. Linear transformations preserving stability – transcendental case.

Exercise 5.3. Let T : C[x] → C[x] be a linear transformation.
(a) Then T : S[x] → S[x] if and only if T : S[x]≤κ → S[x] for all κ ∈ Nm.
(b) Define S : C[x,y] → C[x,y] by S(xαyβ) = T (xα)yβ and linear extension. If
T ((x + u)κ) is stable for all κ ∈ Nm then S((x + u)κ(y + v)β) is stable for all
κ, β ∈ Nm.

Let S[x] denote the set of all power series in C[[x]] that are obtained as the limit
of a sequence of stable polynomials in S[x] which converges uniformly on compact
sets. Theorem 5.4 is an astounding generalization of the Pólya-Schur Theorem. For
α ∈ Nm, let α! =

∏m
i=1 α(i)!.

Theorem 5.4 (Theorem 1.3 of [5]). Let T : C[x] → C[x] be a linear transformation.
Then T maps S[x] into S[x] if and only if either
(a) T (f) = η(f) · p for some linear functional η : C[x] → C and p ∈ S[x], or
(b) the power series

T (e−xy) =
∑

α:[m]→N

(−1)αT (xα)
yα

α!

is in S[x,y]

(Theorem 3.5 has a similar extension – see Theorems 1.2 and 1.4 of [5].)
For α ≤ β in Nm, let (β)α = β!/(β − α)!, and for α 6≤ β let (β)α = 0.
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Theorem 5.5 (Theorem 5.1 of [5]). Let F (x,y) =
∑

α∈Nm Pα(x)yα be a power
series in C[x][[y]] (so that each Pα ∈ C[x]). Then F (x,y) is in S[x,y] if and only
if for all β ∈ Nm, ∑

α≤β

(β)αPα(x)yα

is stable in S[x,y].

(This implies the analogous result for real stability, since SR[x] = S[x] ∩ R[x].)

Exercise 5.6. Derive Theorem 5.4 from Theorems 5.2 and 5.5. (Hint: T ((x+y)κ)
is stable if and only if T ((1− xy)κ) is stable.)

One direction of Theorem 5.5 is relatively straightforward.

Lemma 5.7 (Lemma 5.2 of [5]). Fix β ∈ Nm. The linear transformation T : yα 7→
(β)αyα on C[y] preserves stability.

Proof. By Theorem 5.2 and Exercise 5.3(a), it suffices to show that for all κ ∈ Nm,
the polynomial T ((y + u)κ) is stable. Now

T ((y + u)κ) =
m∏

i=1

κ(i)∑
j=0

j!
(
κ(i)
j

)(
β(i)
j

)
yj

i u
κ(i)−j
i

 ,
so it suffices to show that for all k, b ∈ N, the polynomial f(t) =

∑k
j=0 j!

(
k
j

)(
b
j

)
tj is

real stable. Let g(t) = (1 + d/dt)ktb. One can check that f(t) = tbg(1/t). It thus
suffices to show that 1+d/dt preserves stability. For any a ∈ N, (1+d/dt)(t+u)a =
(t+ u+ a)(t+ u)a−1 is stable, and so Theorem 5.2 implies the result. �

Now, let F = F (x,y) be as in the statement of Theorem 5.5, and let (Fn : n ∈ N)
be a sequence of stable polynomials Fn(x,y) =

∑
α∈Nm Pn,α(x)yα in S[x,y] con-

verging to F uniformly on compact sets. Fix β ∈ N and define a linear transfor-
mation T : C[x,y] → C[x,y] by T (xγyα) = (β)αxγyα and linear extension. By
Lemma 5.7 and Exercise 5.3, T preserves stability in S[x,y]. Thus, (T (Fn) : n ∈ N)
is a sequence of stable polynomials converging to T (F ). Since T (F ) is a polynomial
the convergence is uniform on compact sets, and so Hurwitz’s Theorem implies that
T (F ) is stable.

The converse direction of Theorem 5.5 is considerably more technical, although
the idea is simple. With F as in the theorem, for each n ≥ 1 let

Fn(x,y) =
∑

α≤n1

(n1)αPα(x)
yα

nα
.

The sequence (Fn : n ≥ 1) converges to F , since for each α ∈ Nm, n−α(n1)α → 1
as n → ∞. Each Fn is stable, by hypothesis (and scaling). The hard work is
involved with showing that the convergence is uniform on compact sets. To do this,
Borcea and Brändén develop a very flexible multivariate generalization of the Szasz
Principle [5, Theorem 5.6] – in itself an impressive accomplishment. Unfortunately,
we have no space here to develop this result – see Section 5.2 of [5].
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6. Johnson’s Conjectures.

Let A = (A1, . . . , Ak) be a k-tuple of n-by-n matrices. Define the mixed deter-
minant of A to be

Det(A) = Det(A1, . . . , Ak) =
∑

(S1,...,Sk)

k∏
i=1

detAi[Si],

in which the sum is over all ordered sequences of k pairwise disjoint subsets of [n]
such that [n] = S1 ∪ · · · ∪Sk, and Ai[Si] is the principal submatrix of Ai supported
on rows and columns in Si. Let Ai(Si) be the complementary principal submatrix
supported on rows and columns not in Si, and for j ∈ [n] let Ai(j) = Ai({j}).

For example, when k = 2 and A1 = xI and A2 = −B, this specializes to
Det(xI,−B) = det(xI −B), the characteristic polynomial of B. In the late 1980s,
Johnson made three conjectures about the k = 2 case more generally.

Johnson’s Conjectures. Let A and B be n-by-n matrices, with A positive defi-
nite and B Hermitian.
(a) Then Det(xA,−B) has only real roots.
(b) For j ∈ [n], the roots of Det(xA(j),−B(j)) interlace those of Det(xA,−B).
(c) The inertia of Det(xA,−B) is the same as that of det(xI −B).

In part (c), the inertia of a univariate real stable polynomial p is the triple
ι(p) = (ι−(p), ι0(p), ι+(p)) with entries the number of negative, zero, or positive
roots of p, respectively.

In 2008, Borcea and Brändén [1] proved all three of these statements in much
greater generality.

Theorem 6.1 (Theorem 2.6 of [1]). Fix integers `,m, n ≥ 1. For h ∈ [`] and
i ∈ [m] let Bh and Ahi be n-by-n matrices, and let

Lh =
m∑

i=1

xiAhi +Bh.

(a) If all the Ahi are positive semidefinite and all the Bh are Hermitian, then
Det(L) = Det(L1, . . . , L`) ∈ SR[x] is real stable.
(b) For each j ∈ [n], let L(j) = (L1(j), . . . , L`(j)). With the hypotheses of part (a),
the polynomial Det(L) + yDet(L(j)) ∈ SR[x, y] is real stable.

Proof. Let Y = diag(y1, ..., yn) be a diagonal matrix of indeterminates. By Propo-
sition 2.1, for each h ∈ [`] the polynomial

det(Y + Lh) =
∑

S⊆[n]

yS detLh(S)

is real stable in SR[x,y]. By inversion of all the y indeterminates, each

det(I − Y Lh) =
∑

S⊆[n]

(−1)|S|yS detLh[S]
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is real stable. Since
∏`

h=1 det(I−Y Lh) is real stable, contraction and specialization
imply that

Det(L) = (−1)n ∂n

∂y1 · · · ∂yn

∏̀
h=1

det(I − Y Lh)

∣∣∣∣∣
y=0

is real stable, proving part (a).
For part (b), let V be the n-by-n matrix with all entries zero except for Vjj = y.

By part (a),
Det(V,L1, ..., Lh) = Det(L) + yDet(L(j))

is real stable. �

Theorem 6.1 (with Corollary 2.10) clearly settles Conjectures (a) and (b).

Proof of Conjecture (c). Let A and B be n-by-n matrices with A positive definite
and B Hermitian. Let (ι−, ι0, ι+) be the inertia of det(xI − B). Let f(x) =
Det(xA,−B), and let (ν−, ν0, ν+) be the inertia of f .

We begin by showing that ν0 = ι0. Since ι0 = min{|S| : S ⊆ [n] and det(B(S)) 6=
0}, it follows that ν0 ≥ ι0. The constant term of f(x) is (−1)n det(B), so that if
ι0 = 0 then ν0 = 0. If ι0 = k > 0 then let S = {s1, ..., sk} ⊆ [n] be such that
det(B(S)) 6= 0. For 0 ≤ i ≤ k let fi(x) = Det(A({s1, .., si}),−B({s1, .., si})), so
that f0(x) = f(x). By Theorem 6.1, the roots of fi−1 and of fi are interlaced, for
each i ∈ [k]. Thus,

ν0 = ι0(f0) ≤ ι0(f1) + 1 ≤ ι0(f2) + 2 ≤ · · · ≤ ι0(fk) + k = k = ι0,

since ι0(fk) = 0 because det(B(S)) 6= 0. Therefore ν0 = ι0.
For any positive definite matrix A, Det(xA,−B) is a polynomial of degree n.

Suppose that A is such a matrix for which ν+ 6= ι+. Consider the matrices Aλ =
(1 − λ)I + λA for λ ∈ [0, 1]. Each of these matrices is positive definite. From the
paragraph above, each of the polynomials gλ(x) = Det(xAλ,−B) has ι0(gλ) = ι0.
Since ι+(g0) = ι+ 6= ν+ = ι+(g1) and the roots of gλ vary continuously with λ,
there is some value µ ∈ (0, 1) for which ι0(gµ) > ι0. This contradiction shows that
ν+ = ι+, and hence ν− = ι− as well. �

Borcea and Brändén [1] proceed to derive many inequalities for the principal
minors of positive semidefinite matrices, and some for merely Hermitian matrices.
These are applications of inequalities valid more generally for real stable polynomi-
als. The simplest of these inequalities are as follows.

For an n-by-n matrix A, the j-th symmetrized Fisher product is

σj(A) =
∑

S⊆[n]: |S|=j

det(A[S]) det(A(S)).

and the j-th averaged Fisher product is σ̂j(A) =
(
n
j

)−1
σj(A). Notice that σj(A) =

σn−j(A) for all 0 ≤ j ≤ n.

Corollary 6.2. Let A be an n-by-n positive semidefinite matrix.
(a) Then σ̂j(A)2 ≥ σ̂j−1(A)σ̂j+1(A) for all 1 ≤ j ≤ n− 1.
(b) Also, σ̂0(A) ≤ σ̂1(A) ≤ · · · ≤ σ̂bn/2c.
(c) If A is positive definite and det(A) = d then

σ̂1(A)
d

≥
(
σ̂2(A)
d

)1/2

≥
(
σ̂3(A)
d

)1/3

≥ · · · ≥
(
σ̂n(A)
d

)1/n

= 1.
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Proof. It suffices to consider positive definite A. By Theorem 6.1, the polynomial
Det(xA,−A) =

∑n
j=0(−1)jσj(A)xj has only real roots, and these roots are all

positive. Part (a) follows from Newton’s Inequalities [12, Theorem 51]. Part (a)
and the symmetry σj(A) = σn−j(A) for all 0 ≤ j ≤ n imply part (b). Part (c)
follows from Maclaurin’s Inequalities [12, Theorem 52]. �

7. The symmetric exclusion process.

This section summarizes an application of stable polynomials to probability and
statistical mechanics from a 2009 paper of Borcea, Brändén and Liggett [7].

Let Λ be a set of sites. A symmetric exclusion process (SEP) is a type of Markov
chain with state space a subset of {0, 1}Λ. In a state S : Λ → {0, 1}, the sites in
S−1(1) are occupied and the sites in S−1(0) are vacant. This is meant to model
a physical system of particles interacting by means of hard-core exclusions. Such
models come in many varieties – to avoid technicalities we discuss only the case
of a finite system Λ and continuous time t. (The results of this section extend to
countable Λ under a reasonable finiteness condition on the interaction rates.) Sym-
metry of the interactions turns out to be crucial, but particle number conservation
is unimportant.

Let E be a set of two-element subsets of Λ. For each {i, j} ∈ E, let λij > 0 be
a positive real, and let τij : Λ → Λ be the permutation that exchanges i and j and
fixes all other sites. Our SEP Markov chain M proceeds as follows. Each {i, j} ∈ E
has a Poisson process “clock” of rate λij , and these are independent of one another.
With probability one, no two clocks ever ring at the same time. When the clock
of {i, j} rings, the current state S is updated to the new state S ◦ τij . In other
words, when the {i, j} clock rings, if exactly one of the sites {i, j} is occupied then
a particle hops from the occupied to the vacant of these two sites.

Let Λ = [m] and Ω = {0, 1}Λ, let ϕ0 be an initial probability distribution on Ω,
and let ϕt be the distribution of the state of M, starting at ϕ0, after evolving for
time t ≥ 0. We are concerned with properties of the distribution ϕt that hold for
all t ≥ 0.

7.1. Negative correlation and negative association. Consider a probability
distribution ϕ on Ω. An event E is any subset of Ω. The probability of the event
E is Pr[E] =

∑
S∈E ϕ(S). An event E is increasing if whenever S ≤ S′ in Ω and

S ∈ E, then S′ ∈ E. For example, if K is any subset of Λ and EK is the event that
all sites in K are occupied, then EK is an increasing event. Notice that this event
has the form EK = E′ × {0, 1}ΛrK for some event E′ ⊆ {0, 1}K . Two events E

and F are disjointly supported when one can partition Λ = A ∪B with A ∩B = ∅
and E = E′ × {0, 1}B and F = {0, 1}A × F′ for some events E′ ⊆ {0, 1}A and
F′ ⊆ {0, 1}B .

A probability distribution on Ω is negatively associated (NA) when Pr[E ∩ F] ≤
Pr[E] · Pr[F] for any two increasing events that are disjointly supported. It is
negatively correlated (NC) when Pr[E{i,j}] ≤ Pr[E{i}] ·Pr[E{j}] for any two distinct
sites {i, j} ⊆ Λ. Clearly NA implies NC.

It is useful to find conditions under which NC implies NA, since NC is so much
easier to check. The following originates with Feder and Mihail, but many others
have contributed their insights – see Section 4.2 of [7]. The partition function of
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any ϕ : Ω → R is the real multiaffine polynomial

Z(ϕ) = Z(ϕ;x) =
∑
S∈Ω

ϕ(S)xS

in R[x]MA. If ϕ is nonzero and nonnegative, then for any a ∈ RΛ with a > 0, this de-
fines a probability distribution ϕa : Ω → [0, 1] by setting ϕa(S) = ϕ(S)aS/Z(ϕ;a)
for all S ∈ Ω.

Feder-Mihail Theorem (Theorem 4.8 of [7]). Let S be a class of nonzero non-
negative functions satisfying the following conditions.
(i) Each ϕ ∈ S has domain {0, 1}Λ for some finite set Λ = Λ(ϕ).
(ii) For each ϕ ∈ S, Z(ϕ) is a homogeneous polynomial.
(iii) For each ϕ ∈ S and i ∈ Λ(ϕ), Z(ϕ)|xi=0 and ∂iZ(ϕ) are partition functions of
members of S.
(iv) For each ϕ ∈ S and a ∈ RΛ(ϕ) with a > 0, ϕa is NC.
Then for every ϕ ∈ S and a ∈ RΛ(ϕ) with a > 0, ϕa is NA.

7.2. A conjecture of Liggett and Pemantle. In the early 2000s, Liggett and
Pemantle arrived independently at the following conjecture, now a theorem.

Theorem 7.1 (Theorem 5.2 of [7]). If the initial distribution ϕ0 of a SEP is
deterministic ( i.e. concentrated on a single state) then ϕt is NA for all t ≥ 0.

Proof. This amounts to finding a class S of probability distributions such that:
(1) deterministic distributions are in S,
(2) being in S implies NA, and
(3) time evolution of the SEP preserves membership in S.

Borcea, Brändén, and Liggett [7] identified such a class: ϕ is in S if and only if
the partition function Z(ϕ) is homogeneous, multiaffine, and real stable. (Notice
that if ϕ is in S then ϕa is in S for all a ∈ RΛ with a > 0, by scaling.) We proceed
to check the three claims above.

Claim (1) is trivial, since if ϕ(S) = 1 then Z(ϕ) = xS , which is clearly homoge-
neous, multiaffine, and real stable.

To check claim (2) we verify the hypotheses of the Feder-Mihail Theorem. Hy-
potheses (i) and (ii) hold since Z(ϕ) is multiaffine and homogeneous. By special-
ization and contraction, (iii) holds. To check (iv), let a ∈ RΛ with a > 0, let
{i, j} ⊆ Λ, and consider the probability distribution ϕa on Ω. The occupation
probability for site i is

Pr[E{i}] =
∑

S∈{0,1}Λ: S(i)=1

ϕ(S)aS

Z(ϕ;a)
= ai

∂iZ(ϕ;a)
Z(ϕ;a)

,

and similarly for Pr[E{j}]. Likewise, Pr[E{i,j}] = aiajZ(ϕ;a)−1 · ∂i∂jZ(ϕ;a). Now

Pr[E{i,j}]− Pr[E{i}] · Pr[E{j}] = − aiaj

Z(ϕ;a)2
·∆ijZ(ϕ;a) ≤ 0,

by Theorem 3.1. Thus ϕa is NC. By the Feder-Mihail Theorem, every ϕ in S is
NA.

To check claim (3) we need some of the theory of continuous time Markov chains.
The time evolution of a Markov chain M with finite state space Ω is governed by
a one-parameter semigroup T (t) of transformations of RΩ. For a function F ∈ RΩ
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and time t ≥ 0 and state S ∈ Ω, (T (t)F )(S) is the expected value of F at time t,
given that the initial distribution of M is concentrated at S with probability one
at time 0. In particular, ϕt = T (t)ϕ0 for all t ≥ 0, and all initial distributions
ϕ0. In the case of the SEP we are considering, the infinitesimal generator L of the
semigroup T (t) is given by

L =
∑

{i,j}∈E

λij (τij − 1) .

For each {i, j} ∈ E, this replaces each S ∈ Ω by S ◦ τij at the rate λij .
In preparation for Section 7.3, it is useful to regard L as an element of the real

semigroup algebra A = R[E] of the semigroup E of all endofunctions f : Ω → Ω (with
the operation of functional composition). The left action of E on Ω is extended to
a left action of A on C[x] as usual: for f ∈ E and S ∈ Ω, f(xS) = xf(S), extended
bilinearly to all of A and C[x]. A permutation σ ∈ S(Λ) is identified with the
endofunction fσ : S 7→ S ◦σ−1, so this action of A agrees with the action of S(m) in
Section 4.2. A left action of A on RΩ is defined by Z(f(F )) = f(Z(F )) for all f ∈ E
and F ∈ RΩ, and linear extension. More explicitly, for f ∈ E, F ∈ RΩ, and S ∈ Ω,

(f(F ))(S) = F (f−1(S)) =
∑

{F (S′) : S′ ∈ Ω and f(S′) = S}.

Consider an element of A of the form L =
∑N

i=1 λi(fi − 1) with all λi > 0. Let
λi ≤ L for all i ∈ [N ], and let K =

∑N
i=1 λi. The power series

exp(tL) = e−Kt
∞∑

n=0

tn

n!

[
N∑

i=1

λifi

]n

=
∑
f∈E

Pf(t) · f

in A[[t]] is such that for each f ∈ E, Pf(t) ∈ R[[t]] is dominated coefficientwise by
exp((LN −K)t). Thus exp(tL) ∈ A[[t]] converges for all t ≥ 0. The semigroup of
transformations generated by L is exp(tL).

To check claim (3) we will show that the semigroup T (t) of the SEP preserves
stability for all t ≥ 0: that is, if Z(ϕ0) is stable then Z(ϕt) = T (t)Z(ϕ0) is stable
for all t ≥ 0. This reduces to the case of a single pair {i, j} ∈ E, as follows. If M1

and M2 are Markov chains on the same finite state space, with semigroups T1(t)
and T2(t) generated by L1 and L2, then the semigroup generated by L1 + L2 is

T (t) = lim
n→∞

[T1(t/n)T2(t/n)]n ,

by the Trotter product formula. By Hurwitz’s Theorem, It follows that if Ti(t)
preserves stability for all t ≥ 0 and i ∈ {1, 2}, then T (t) preserves stability for all
t ≥ 0. By repeated application of this argument, in order to show that the SEP
semigroup T (t) = exp(tL) preserves stability for all t ≥ 0 it is enough to show that
for each {i, j} ∈ E, Tij(t) = exp(tλij(τij−1)) preserves stability for all t ≥ 0. Now,
since τ2

ij = 1,

Tij(t) =
(

1 + e−2λijt

2

)
+
(

1− e−2λijt

2

)
· τij .

By Lemma 4.3, this preserves stability for all t ≥ 0. This proves Theorem 7.1. �
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7.3. Further observations. In verifying the hypotheses of the Feder-Mihail The-
orem we used the fact that if f ∈ SR[x]MA is multiaffine and real stable, then
∆ijf(a) ≥ 0 for all {i, j} ⊆ E and a ∈ Rm, by Theorem 3.1. In fact, we only
needed the weaker hypothesis that ∆ijf(a) ≥ 0 for all {i, j} ⊆ E and a ∈ Rm

with a > 0. A multiaffine real polynomial satisfying this weaker condition is a
Rayleigh polynomial. (This terminology is by analogy with the Rayleigh mono-
tonicity property of electrical networks – see Definition 2.5 of [7] and the references
cited there. Multiaffine real stable polynomials are also called strongly Rayleigh.)
The class of probability distributions ϕ such that Z(ϕ) is homogeneous, multiaffine,
and Rayleigh meets all the conditions of the Feder-Mihail Theorem. It follows that
all such distributions are NA.

Claim (2) above can be generalized in another way – the hypothesis of ho-
mogeneity can be removed, as follows. Let y = (y1, . . . , ym) and let ej(y) be
the j-th elementary symmetric function of the y. Given a multiaffine polyno-
mial f =

∑
S⊆[m] c(S)xS , the symmetric homogenization of f is the polynomial

fsh(x,y) ∈ C[x,y]MA defined by

fsh(x,y) =
∑

S⊆[m]

c(S)xS

(
m

|S|

)−1

em−|S|(y).

Note that fsh is homogeneous of degree m, and fsh(x,1) = f(x).

Proposition 7.2 (Theorem 4.2 of [7]). If f ∈ SR[x]MA is multiaffine and real
stable then fsh ∈ SR[x,y]MA is homogeneous, multiaffine and real stable.

(We omit the proof.)

Corollary 7.3 (Theorem 4.9 of [7]). Let ϕ : Ω → [0,∞) be such that Z(ϕ) is
nonzero, multiaffine, and real stable. Then for all a ∈ Rm with a > 0, ϕa is NA.

Proof. By Proposition 7.2, Zsh(ϕ;x,y) is nonzero, homogeneous, multiaffine, and
real stable. This is the partition function for ψ : {0, 1}[2m] → [0,∞) given by
ψ(S) =

(
m

|S∩[m]|
)−1

ϕ(S ∩ [m]). By claim (2) above, ψa is NA for all a ∈ R2m with
a > 0. By considering those a ∈ R2m for which ai = 1 for all m + 1 ≤ i ≤ 2m, it
follows that ϕa is NA for all a ∈ Rm with a > 0. �

Corollary 7.4 (Theorem 5.2 of [7]). If the initial distribution ϕ0 of a SEP is such
that Z(ϕ) is stable (but not necessarily homogeneous), then Z(ϕt) is stable, and
hence ϕt is NA, for all t ≥ 0.

It is natural to try extending these results to asymmetric exclusion processes.
For (i, j) ∈ Λ2 define tij ∈ E by tij(S) = S ◦ τij if S(i) = 1 and S(j) = 0, and
tij(S) = S otherwise, for all S ∈ Ω. That is, tij makes a particle hop from site i
to site j, if possible. Let E be a set of ordered pairs in Λ2, and for (i, j) ∈ E let
λij > 0. An asymmetric exclusion process is a Markov chain on Ω with semigroup
T (t) = exp(tL) generated by something of the form

L =
∑

(i,j)∈E

λij(tij − 1).

By the argument for claim (3) above, in order to show that T (t) preserves sta-
bility for all t ≥ 0, it suffices to do so for the two-site semigroup T{1,2}(t) =
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exp(tL{1,2}) generated by

L{1,2} = λ12(t12 − 1) + λ21(t21 − 1).

Exercise 7.5 (Strengthening Remark 5.3 of [7]). With the notation above, let
λ = λ12 + λ21, β12 = λ12/λ, and β21 = λ21/λ.
(a) In A, t12 + t21 = 1 + τ12.
(b) If ω is any word in {t12, t21}n, then t12ω = t12 and t21ω = t21.
(c) The semigroup generated by L{1,2} is

T{1,2}(t) = e−λt + (1− e−λt)(β12t12 + β21t21)

(d) The semigroup T{1,2}(t) preserves stability for all t ≥ 0 if and only if β12 =
β21 = 1/2, in which case it reduces to the SEP (of rate λ/2).
Thus, even the slightest asymmetry ruins preservation of stability by the SEP!

Finally, we consider a SEP in which particle number is not conserved. For i ∈ Λ
define ai, a

∗
i ∈ E as follows: for S ∈ Ω and j ∈ Λ, let (ai(S))(j) = (a∗i (S))(j) = S(j)

if j 6= i, and (ai(S))(i) = 0 and (a∗i (S))(i) = 1. That is, ai annihilates a particle at
site i, and a∗i creates a particle at site i, if possible.

A SEP with particle creation and annihilation is a Markov chain on Ω with
semigroup T (t) = exp(tL) generated by something of the form

L =
∑

{i,j}∈E

λij(τij − 1) +
∑
i∈Λ

[θi(ai − 1) + θ∗i (a∗i − 1)] ,

in which the first sum is the generator of the SEP in Theorem 7.1 and θi, θ
∗
i ≥ 0

for each i ∈ Λ.
By the argument for claim (3) above, to show that this T (t) preserves stability for

all t ≥ 0, it suffices to do so for the one-site semigroups generated by L1 = θ(a1−1)
and L∗

1 = θ(a∗1 − 1), respectively.

Exercise 7.6. The semigroups generated by L1 and L∗
1 are

T1(t) = e−θt + (1− e−θt)a1 and T ∗1 (t) = e−θt + (1− e−θt)a∗1,

respectively. Both T1(t) and T ∗1 (t) preserve stability.

Corollary 7.7. If the initial distribution ϕ0 of a SEP with particle creation and
annihilation is such that Z(ϕ) is stable, then Z(ϕt) is stable, and hence ϕt is NA,
for all t ≥ 0.

8. Inequalities for mixed discriminants.

This section summarizes a powerful application of stable polynomials from a
2008 paper of Gurvits [11].

We will use without mention the facts that log and exp are strictly increasing
functions on (0,∞). A function ρ : I → R defined on an interval I ⊆ R is convex
provided that for all a1, a2 ∈ I, ρ((a1 + a2)/2) ≤ (ρ(a1) + ρ(a2))/2. It is strictly
convex if it is convex and equality holds here only when a1 = a2. A function
ρ : I → R is (strictly) concave if −ρ is (strictly) convex. For example, for positive
reals a1, a2 > 0 one has (

√
a1 −

√
a2)2 ≥ 0, with equality only if a1 = a2. It follows

that log((a1 + a2)/2) ≥ (log(a1) + log(a2))/2, with equality only if a1 = a2. That
is, log is strictly concave.
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Jensen’s Inequality (Theorem 90 of [12]). Let ρ : I → R be defined on an interval
I ⊆ R, let ai ∈ I for i ∈ [n], and let bi > 0 for i ∈ [n] be such that

∑n
i=1 bi = 1. If

ρ is convex then

ρ

(
n∑

i=1

biai

)
≤

n∑
i=1

bi ρ(ai).

If ρ is strictly convex and equality holds, then a1 = a2 = · · · = an.

For integer d ≥ 1, let G(d) = (1 − 1/d)d−1, and let G(0) = 1. Note that
G(1) = 00 = 1, and that G(d) is a strictly decreasing function for d ≥ 1. For
homogeneous f ∈ R[x] with nonnegative coefficients, define the capacity of f to be

cap(f) = inf
c>0

f(c)
c1 · · · cm

,

with the infimum over the set of all c ∈ Rm with ci > 0 for all i ∈ [m].

Lemma 8.1 (Lemma 3.2 of [11]). Let f =
∑d

i=0 bix ∈ R[x] be a nonzero univariate
polynomial of degree d with nonnegative coefficients. If f is real stable then b1 =
f ′(0) ≥ G(d)cap(f), and if cap(f) > 0 then equality holds if and only if d ≤ 1 or
f(x) = bd(x+ ξ)d for some ξ > 0.

Proof. If cap(f) = 0 then there is nothing to prove, so assume that cap(f) > 0.
If d = 0 then f ′(0) = b1 = 0 = G(0)cap(f), and if d = 1 then f ′(0) = b1 =
G(1)cap(f), so assume that d ≥ 2. If f(0) = 0 then f ′(0) = limc→0 f(c)/c ≥
cap(f) > G(d)cap(f). Thus, assume that d ≥ 2 and f(0) = b0 > 0. We may rescale
the polynomial so that b0 = 1. Now there are ai > 0 for i ∈ [d] such that

f(x) =
d∏

i=1

(1 + aix),

and b1 = a1 + · · ·+ ad. For any c > 0 we have

log(cap(f)c)
d

≤ log(f(c))
d

=
1
d

d∑
i=1

log(1 + aic) ≤ log
(

1 +
b1c

d

)
,

by Jensen’s Inequality. It follows that cap(f)c ≤ (1 + b1c/d)d for all c > 0. Let
g(x) = (1 + b1x/d)d. Elementary calculus shows that

cap(g) = inf
c>0

g(c)
c

=
g(c∗)
c∗

=
b1

G(d)
, in which c∗ =

d

b1(d− 1)
.

Since cap(f) ≤ cap(g), this yields the stated inequality. If equality holds, then
equality holds in the application of Jensen’s Inequality, and so f has the stated
form. �

Lemma 8.2 (Theorem 4.10 of [11]). Let f ∈ SR[x1, ..., xm] be real stable, with
nonnegative coefficients, and homogeneous of degree m. Let g = ∂mf |xm=0. Then

cap(g) ≥ G(degm(d))cap(f).

Proof. We may assume that d = degm(f) ≥ 1. Let ci > 0 for i ∈ [m − 1], and let
pc(x) = f(c1, ..., cm−1, x). Since f has nonnegative coefficients, pc 6≡ 0. As in the
proof of Lemma 2.4(f), pc has degree d. By specialization, pc is real stable. Lemma
8.1 implies that

g(c) = p′c(0) ≥ G(d)cap(pc) ≥ G(d)cap(f)
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for all c ∈ Rm−1 with c > 0. If m = 1 then g = cap(g) is a constant. If m ≥ 2
then for any such c let b = (c1 · · · cm−1)−1/(m−1). Since g is homogeneous of degree
m− 1,

g(c)
c1 · · · cm−1

= g(bc1, ..., bcm−1) ≥ G(d)cap(f).

It follows that cap(g) ≥ G(d)cap(f). �

Theorem 8.3 (Theorem 2.4 of [11]). Let f ∈ SR[x1, ..., xm] be real stable, with
nonnegative coefficients, and homogeneous of degree m. Let degi(f) = di and
ei = min{i, di} for each i ∈ [m]. Then

∂1f(0) ≥ cap(f)
m∏

i=2

G(ei).

Proof. Let gm = f and let gi−1 = ∂igi|xi=0 for all i ∈ [m]. By contraction and
specialization, gi is real stable for each i ∈ [m]. Notice that g0 = ∂1f(0) =
cap(g0). By Lemma 8.2. cap(gi−1) ≥ cap(gi) · G(degi gi) for each i ∈ [m]. But
degi gi ≤ degi f = di, and degi gi is at most the total degree of gi, which is i. Hence
degi gi ≤ ei, and thus G(degi gi) ≥ G(ei). Thus cap(gi−1) ≥ cap(gi) ·G(ei) for each
i ∈ [m]. Combining these inequalities (and G(e1) = 1) gives the result. �

With the notation of Theorem 8.3, since ei ≤ i for all i ∈ [m] and G(d) is a
decreasing function of d, one has the inequality

m∏
i=2

G(ei) ≥
m∏

i=2

G(i) =
m∏

i=2

(
i− 1
i

)i−1

=
m!
mm

.

Thus, the following corollary is immediate.

Corollary 8.4. Let f ∈ SR[x1, ..., xm] be real stable, with nonnegative coefficients,
and homogeneous of degree m. Then

∂1f(0) ≥ m!
mm

· cap(f).

Theorem 8.5 (Theorem 5.7 of [11]). Let f ∈ SR[x1, ..., xm] be real stable, with
nonnegative coefficients, and homogeneous of degree m. Equality holds in the bound
of Corollary 8.4 if and only if there are nonnegative reals ai ≥ 0 for i ∈ [m] such
that

f(x) = (a1x1 + · · ·+ amxm)m.

(We omit the proof.)

Lemma 8.6 (Fact 2.2 of [11]). Let f ∈ R[x1, ..., xm] be homogeneous of degree
m, with nonnegative coefficients. Assume that ∂if(1) = 1 for all i ∈ [m]. Then
cap(f) = 1.

Proof. Let f =
∑

α b(α)xα, so that if b(α) 6= 0 then |α| =
∑m

i=1 α(i) = m. By
hypothesis, for all i ∈ [m],

∑
α b(α)α(i) = 1. Averaging these over all i ∈ [m] yields

f(1) =
∑

α b(α) = 1, so that cap(f) ≤ 1. Conversely, let c ∈ Rm with c > 0.
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Jensen’s Inequality implies that

log(f(c)) = log

(∑
α

b(α)cα

)

≥
∑
α

b(α) log(cα) =
m∑

i=1

log(ci)
∑
α

b(α)α(i) = log(c1 · · · cm).

It follows that cap(f) ≥ 1. �

Example 8.7 (van der Waerden Conjecture). An m-by-m matrix A = (aij) is
doubly stochastic if all entries are nonnegative reals and every row and column
sums to one. In 1926, van der Waerden conjectured that if A is an m-by-m doubly
stochastic matrix then per(A) ≥ m!/mm, with equality if and only if A = (1/m)J ,
the m-by-m matrix in which every entry is 1/m. In 1981 this lower bound was
proved by Falikman, and the characterization of equality was proved by Egorychev.
These results follow immediately from Corollary 8.4 and Theorem 8.5, as follows.
It suffices to prove the result for an m-by-m doubly stochastic matrix A = (aij)
with no zero entries, by a routine limit argument. The polynomial

fA(x) =
m∏

j=1

(a1jx1 + · · ·+ amjxm)

is clearly homogeneous and real stable, with nonnegative coefficients and of degree
m, and such that degi(fA) = m for all i ∈ [m]. Since A is doubly stochastic, Lemma
8.6 implies that cap(fA) = 1. Since

per(A) = ∂1fA(0),

Corollary 8.4 and Theorem 8.5 imply the results of Falikman and Egorychev, re-
spectively. Gurvits [11] also uses a similar argument to prove a refinement of the
van der Waerden conjecture due to Schrijver and Valiant – see also [13].

Given n-by-n matrices A1,...,Am, the mixed discriminant of A = (A1, ..., Am) is

Disc(A) = ∂1 det(x1A1 + · · ·+ xmAm)
∣∣
x=0

.

This generalizes the permanent of an m-by-m matrix B = (bij) by considering the
collection of matrices A(B) = (A1, ..., Am) defined by Ah = diag(ah1, ..., ahm) for
each h ∈ [m]. In this case one sees that

det(x1A1 + · · ·+ xmAm) = fB(x)

with the notation of Example 8.7, and it follows that Disc(A(B)) = per(B).

Example 8.8 (Bapat’s Conjecture). Generalizing the van der Waerden conjec-
ture, in 1989 Bapat considered the set Ω(m) of m-tuples of m-by-m matrices
A = (A1, ..., Am) such that each Ai is positive semidefinite with trace tr(Ai) = 1,
and

∑m
i=1Ai = I. For any doubly stochastic matrix B, A(B) is in this set. The

natural conjecture is that for all A ∈ Ω(m), Disc(A) ≥ m!/mm, and equality is
attained if and only if A = A((1/m)J). This was proved by Gurvits in 2006 –
again, it follows directly from Corollary 8.4 and Theorem 8.5. It suffices to prove
the result for A ∈ Ω(m) such that each Ai is positive definite, by a routine limit
argument. By Proposition 2.1, for A ∈ Ω(m), the polynomial

fA(x) = det(x1A1 + · · ·+ xmAm)
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is real stable. Since each Ai is positive definite, all coefficients of fA are nonnegative,
fA is homogeneous of degree m, and degi(fA) = m for all i ∈ [m]. Since A ∈ Ω(m),
Lemma 8.6 implies that cap(fA) = 1. Thus, fA satisfies the hypothesis of Theorems
8.3 and 8.5, and since Disc(A) = ∂1fA(0), the result follows.

9. Further Directions.

9.1. Other circular regions. Let Ω ⊆ Cm. A polynomial f ∈ C[x] is Ω-stable if
either f ≡ 0 identically, or f(z) 6= 0 for all z ∈ Ω. At this level of generality little
can be said. If Ω = A1 × · · · ×Am is a product of open circular regions then there
are Möbius transformations z 7→ φi(z) = (aiz+ bi)/(ciz+di) such that φi(H) = Ai

for all i ∈ [m]. The argument in Section 4.1 shows that f ∈ C[x] is Ω-stable if and
only if

f̃ = (cz + d)deg f · f(φ1(z1), ..., φm(zm))

is stable. In this way results about stable polynomials can be translated into results
about Ω-stable polynomials for any Ω that is a product of open circular regions.

Theorem 6.3 of [5] is the Ω-stability analogue of Theorem 5.2. We mention only
two consequences of this. Let D = {z ∈ C : |z| < 1} be the open unit disc,
and for θ ∈ R let Hθ = {e−iθz : z ∈ H}. Thus H0 = H, and Hπ/2 is the open
right half-plane. A Dm-stable polynomial is called Schur stable, and a Hm

π/2-stable
polynomial is called Hurwitz stable.

Proposition 9.1 (Remark 6.1 of [5].). Fix κ ∈ Nm, and let T : C[x]≤κ → C[x] be
a linear transformation. The following are equivalent:
(a) T preserves Schur stability.
(b) T ((1 + xy)κ) is Schur stable in C[x,y].

Proposition 9.2 (Remark 6.1 of [5].). Fix κ ∈ Nm, and let T : C[x]≤κ → C[x] be
a linear transformation. The following are equivalent:
(a) T preserves Hurwitz stability.
(b) T ((1 + xy)κ) is Hurwitz stable in C[x,y].

9.2. Applications of Theorem 5.4. It is natural to consider a multivariate
anaogue of the multiplier sequences studied by Pólya and Schur. Let λ : Nm → R,
and define a linear transformation Tλ : C[x] → C[x] by Tλ(xα) = λ(α)xα for all
α ∈ Nm, and linear extension. For which λ does Tλ preserve real stability? The
answer: just the ones you get from the Pólya-Schur Theorem, and no more.

Theorem 9.3 (Theorem 1.8 of [4].). Let λ : Nm → R. Then Tλ preserves real
stability if and only if there are univariate multiplier sequences λi : N → R for
i ∈ [m] and ε ∈ {−1,+1} such that

λ(α) = λ1(α(1)) · · ·λm(α(m))

for all α ∈ Nm, and either ε|α|λ(α) ≥ 0 for all α ∈ Nm, or ε|α|λ(α) ≤ 0 for all
α ∈ Nm.

Theorem 5.4 (and similarly Propositions 9.1 and 9.2) can be used to derive a
wide variety of results of the form: such-and-such an operation preserves stability
(or Schur or Hurwitz stability). Here is a short account of Hinkkanen’s proof of the
Lee-Yang Circle Theorem, taken from Section 8 of [6].
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For f, g ∈ C[x]MA, say f =
∑

S⊆[m] a(S)xS and g =
∑

S⊆[m] b(S)xS , let

f • g =
∑

S⊆[m]

a(S)b(S)xS

be the Schur-Hadamard product of f and g.

Theorem 9.4 (Hinkkanen, Theorem 8.5 of [6]). If f, g ∈ C[x]MA are Schur stable
then f • g is Schur stable.

Proof. Let Tg : C[x]MA → C[x]MA be defined by f 7→ f • g. By Proposition 9.1,
to show that Tg preserves Schur stability it suffices to show that Tg((1 + xy)[m])
is Schur stable. Clearly Tg((1 + xy)[m]) = g(x1y1, ..., xmym) is Schur stable since
g(x) is. Hence Tg preserves Schur stability, and so f • g is Schur stable. �

Theorem 9.5 (Lee-Yang Circle Theorem, Theorem 8.4 of [6]). Let A = (aij) be a
Hermitian m-by-m matrix with |aij | ≤ 1 for all i, j ∈ [m]. Then the polynomial

f(x) =
∑

S⊆[m]

xS
∏
i∈S

∏
j 6∈S

aij

is Schur stable. The diagonalization g(x) = f(x, ..., x) is such that xmg(1/x) =
g(x), and it follows that all roots of g(x) are on the unit circle.

Proof. For i < j in [m] let

fij = (1 + aijxi + aijxj + xixj)
∏

h∈[m]r{i,j}

(1 + xh).

One can check that each fij is Schur stable. The polynomial f(x) is the Schur-
Hadamard product of all the fij for {i, j} ⊆ [m]. By Theorem 9.4, f(x) is Schur
stable. �

Section 8 of [6] contains many many more results of this nature.

9.3. A converse to the Grace-Walsh-Szegő Theorem. The argument of Sec-
tions 4.2 and 4.3 can be used to prove the following.

Exercise 9.6. If f ∈ S[x]MA is multiaffine and stable then

TS(m)(f) =
1
m!

∑
σ∈S(m)

σ(f)

is multiaffine and stable.

This is in fact equivalent to the GWS Theorem, since for all f ∈ C[x]MA,
TS(m)f(x) = Polmf(x, . . . , x). For which transitive permutation groups G ≤ S(m)
does the linear transformation TG = |G|−1

∑
σ∈G σ preserve stability? The answer:

not many, and they give nothing new.

Theorem 9.7 (Theorem 6 of [9].). Let G ≤ S(m) be a transitive permutation group
such that TG preserves stability. Then TG = TS(m).
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9.4. Phase and support theorems. A polynomial f ∈ C[x] has definite parity if
every monomial xα occurring in f has total degree of the same parity: all are even,
or all are odd.

Theorem 9.8 (Theorem 6.2 of [10]). Let f ∈ C[x] be Hurwitz stable and with
definite parity. Then there is a phase 0 ≤ θ < 2π such that e−iθf(x) has only real
nonnegative coefficients.

The support of f =
∑

α c(α)xα is supp(f) = {α ∈ Nm : c(α) 6= 0}. Let
δi denote the unit vector with a one in the i-th coordinate, and for α ∈ Zn let
|α| =

∑m
i=1 |α(i)|. A jump system is a subset J ⊆ Zm satisfying the following two-

step axiom:
(J) If α, β ∈ J and i ∈ [m] and ε ∈ {−1,+1} are such that α′ = α + εδi satisfies
|α′ − β| < |α− β|, then either α′ ∈ J or there exists j ∈ [m] and ε ∈ {−1,+1} such
that α′′ = α′ + εδj ∈ J and |α′′ − β| < |α′ − β|.

Jump systems generalize some more familiar combinatorial objects. A jump
system contained in {0, 1}m is a delta-matroid. A delta-matroid J for which |α| is
constant for all α ∈ J is the set of bases of a matroid. For bases of matroids, the
two-step axiom (J) reduces to the basis exchange axiom familiar from linear algebra:
if A,B ∈ J and a ∈ Ar B, then there exists b ∈ B r A such that (Ar {a}) ∪ {b}
is in J.

Theorem 9.9 (Theorem 3.2 of [8]). If f ∈ S[x] is stable then the support supp(f)
is a jump system.

Recall from Section 7 that for multiaffine polynomials with nonnegative coeffi-
cients, real stability implies the Rayleigh property. A set system J is convex when
A,B ∈ J and A ⊆ B imply that C ∈ J for all A ⊆ C ⊆ B.

Theorem 9.10 (Section 4 of [15]). Let f =
∑

S⊆[m] c(S)xS be multiaffine with real
nonnegative coefficients, and assume that f is Rayleigh.
(a) The support supp(f) is a convex delta-matroid.
(b) The coefficients are log-submodular: for all A,B ⊆ [m],

c(A ∩B)c(A ∪B) ≤ c(A)c(B).
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polynomials and applications Comm. Pure Appl. Math. 62 (2009), 1595–1631.
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THE CONFORMAL GEOMETRY OF BILLIARDS

LAURA DE MARCO

1. Introduction

In this note, we examine the dynamics of billiards on polygonal tables. This is

intended to be neither new research nor a survey, but rather a snapshot of recent

work in one corner of the billiard-dynamics arena. We will concentrate on billiard

tables where all interior angles are rational multiples of π. This class of billiard tables

is closely related to the study of translation surfaces, Riemann surfaces X equipped

with a holomorphic 1-form ω, thus endowing X with a flat Euclidean metric structure

away from finitely many cone-type singularities. Many recent results about billiard

tables of this type come from general statements about moduli spaces of translation

surfaces. The theme of this note is the search for dynamically optimal billiard tables:

tables on which any billiard trajectory (which avoids the corners) is either periodic or

it covers the table uniformly. Figure 1.1 shows an example of a dynamically optimal

table. Careful definitions and examples are given in later sections; the following is an

overview of the presentation.

A polygonal billiard table T , with all angles equal to rational multiples of π, gives

rise to

• a translation surface (XT , ωT ) with genus g(XT ) ≥ 1, via a process called

unfolding; and

• a discrete subgroup ΓT ⊂ SL2R, the stabilizer of (XT , ωT ) under a stretching

operation.

Figure 1.1. A billiard trajectory on the regular pentagon.

1
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The genus g(XT ) is easily computable from the table T ; the formula is stated below

in equation (3.1). Every table with genus g(XT ) = 1 has optimal dynamics as we

discuss in §4.2. In genus 2, by studying the orbits of an SL2R-action on the moduli

space of translation surfaces, McMullen showed:

Theorem 1.1. [Mc2] For g(XT ) = 2, a table T has optimal dynamics if and only if

ΓT is a lattice in SL2R.

Billiard tables with ΓT a lattice are in fact quite rare. McMullen established a com-

plete list of tables T with optimal dynamics in genus 2 [Mc3]; see Theorem 4.3.

It was first observed by Veech that for every genus g(XT ), if ΓT is a lattice in

SL2R, then the table T has optimal dynamics [Ve]. In fact, his statement was much

stronger: the geodesic flow on a translation surface (X, ω) (which is not necessarily

the translation surface for a billiard table) is dynamically optimal whenever Γ is a

lattice, where Γ = Γ(X,ω) is the so-called Veech group of the surface. Theorem

1.1 is itself a consequence of a more general statement about the geodesic flow on

translation surfaces of genus 2; see §4. It is reasonable to guess that the equivalence

of Theorem 1.1 holds for translation surfaces in every genus. However, Smillie and

Weiss have shown recently:

Theorem 1.2. [SW] There exist translation surfaces (X, ω) which have optimal flow

dynamics but for which the Veech group Γ is not a lattice.

Theorem 1.2 leaves open the existence of billiard tables with optimal dynamics but

non-lattice Veech group; billiard surfaces (XT , ωT ) and their SL2R-orbits form only

a small (measure 0) subset of the moduli space of translation surfaces in any genus

> 1.

The Smillie-Weiss examples rely on a covering construction of Hubert and Schmidt

[HS]: there exist surfaces (X,ω) with lattice Veech group and holomorphic branched

coverings of finite degree

f : Y → X

so that the Veech group of the translation surface (Y, f ∗ω) is not a lattice nor even

finitely generated. In certain cases, the dynamical properties of the geodesic flow on

the surface (X, ω) are preserved when passing to the branched cover.

The Hubert-Schmidt construction has led to further collections of interesting ex-

amples. We conclude this note with a discussion of the following recent result of

Cheung, Hubert, and Masur:

Theorem 1.3. [CHM] The billiard dynamics on the isosceles triangle with angles

(2π/5, 3π/10, 3π/10) satisfy a topological dichotomy but are non-optimal: for each

direction, either all billiard trajectories are closed or all are dense, but there exist

directions in which billiard trajectories are dense but not uniformly distributed.
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3π/103π/10

2π/5

Figure 1.2. A triangular table with non-optimal dynamics but satis-

fying the topological dichotomy.

In standard dynamical language, the billiard flow in each direction is either completely

periodic or minimal, while certain minimal directions are not uniquely ergodic. The

triangle of Theorem 1.3 is the only known billiard table with this type of dynamics.

Acknowledgements. I am greatly indebted to the experts in translation surfaces for

helping me prepare this note. Special thanks go to Yitwah Cheung, Howard Masur,

and Curt McMullen for the conversations and numerous email exchanges about their

work. Also, Curt McMullen generated the images of Figures 1.1 and 2.2. I would

like to thank Jayadev Athreya, Matthew Bainbridge, Alex Eskin, and John Smillie for

helpful and lengthy discussions about other recent results in this area. This note does

not do justice to their beautiful mathematics. I thank the AMS for giving me this

opportunity to learn about billiards; my research is also supported by the National

Science Foundation and the Sloan Foundation.

2. Billiard tables

For this article, a billiard table means a polygon in R2 with all angles a rational

multiple of π. See Figure 2.1. A billiard trajectory in direction θ is a straight-line path

which begins at some point in the interior of the table, at angle θ as measured from

the positive real axis, and bounces off the edges with angle of reflection equal to the

angle of incidence. If a billiard trajectory hits a vertex of the polygon, it stops. As

the angles are rational multiples of π, the billiard path will travel again in direction

θ after finitely many reflections off the sides of the table.

2.1. The square table. The simplest example is the square table of side length 1,

with sides parallel to the coordinate axes. In this table, it is easy to see that any

billiard trajectory of angle θ = pπ/q for integers p and q will either hit a vertex or

eventually return to its original configuration (position and angle). If the trajectory

encounters a vertex, then it must encounter a vertex also in backward time (traveling

in the opposite direction). On the other hand, for all other angles and any initial point,

if the trajectory encounters a vertex then it will never hit a vertex in backwards time;

all infinite trajectories bounce around the table spending equal time in parts with

equal area.
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Figure 2.1. Polygonal billiard tables and trajectories.

2.2. Optimal billiard dynamics. We say a billiard table has optimal dynamics if

for each direction θ, one of the following holds:

(1) every trajectory is either periodic or encounters a vertex in both forward and

backward time; or

(2) every trajectory is infinite in either forward or backward time (or both), and

every infinite trajectory is uniformly distributed.

We must take care in our meaning of uniform distribution. Because the table has

rational angles, every trajectory points in only finitely many different directions under

reflections off the sides of the tables. For each direction θ, we may take multiple copies

of the polygonal table, one for each direction arising by reflection of trajectories in

direction θ. We say a trajectory is uniformly distributed if it equidistributes with

respect to Lebesgue measure on this union of tables. In other words, for any trajectory

of infinite length in direction θ, let γ(t), t ≥ 0, be a parametrization of this trajectory

with unit speed (so with each reflection in a side, γ(t) jumps to another copy of the

table). For each time s > 0, we can define probability measure on the union of tables

by
1

s
γ∗ms

where ms is arc-length measure on the interval [0, s] in R. Uniform distribution means

that this family of measures converges weakly as s →∞ to normalized area measure

on the finite union of polygonal tables. The property of optimal dynamics is also

called Veech dichotomy in the literature.

2.3. Examples and non-examples. As explained in §2.1, the unit square table

has optimal dynamics. In fact, any polygon which is tiled by a square (so that all

vertices of the polygon coincide with vertices of the square tiles) will also have optimal

dynamics [GJ]. A distinctly different class of examples was studied by Veech, who

showed:
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Figure 2.2. A billiard trajectory on an L-shaped table, neither closed

nor dense.

Theorem 2.1. [Ve] For every n ≥ 3, the regular n-gon is a dynamically optimal

billiard table.

On the other hand, it is easy to construct tables with non-optimal dynamics. For

example, begin with a square table and attach a rectangle to one side with side lengths

a and b where a/b 6∈ Q. See Figure 2.2. Taking the direction θ = π/4, we see that

the trajectories in direction θ which enter the smaller rectangle are neither closed nor

dense.

2.4. Topologically optimal tables. There is a notion called topological dichotomy

for billiard tables which is weaker than optimal dynamics. A billiard table satisfies

the topological dichotomy if for each direction θ,

(1) every trajectory is either periodic or encounters a vertex in both forward and

backward time; or

(2) every trajectory is infinite in either forward or backward time (or both), and

every infinite trajectory is dense.

As with uniform distribution, we require that the trajectory be dense on the finite

union of tables corresponding to different directions under reflection.

It is a non-trivial task to find billiard table examples which have dense but non-

uniformly distributed trajectories. The following examples were studied by Masur and

Smillie, following a construction of Veech; see [MT], [MS]. Consider a rectangular

table with barrier as in Figure 2.3: begin with a rectangular table of side lengths 1

and 2 and build a perpendicular wall in the middle of the long side of length ` < 1.

When ` is rational, the table is dynamically optimal. When ` is Diophantine (so

it is not too closely approximated by rationals), the table is neither dynamically

optimal nor topologically optimal, but it has billiard trajectories which are dense and

non-uniformly distributed. In this case, the set of directions θ ∈ [0, 2π) with dense

but non-uniformly distributed trajectories is as large as possible, having Hausdorff

dimension 1/2 [Ch].
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!

1

2

Figure 2.3. A rectangular billiard table with barrier of length `.

3. The translation surface of a billiard table

In this section we describe the process of unfolding, passing from a polygonal billiard

table to a Riemann surface equipped with a holomorphic 1-form. In this way, a billiard

trajectory which bounces off the walls of the table unfolds into a straight line on the

surface.

3.1. Unfolding a billiard table. Fix a polygon T in R2 and assume that all of

its angles are rational multiples of π. Let G ⊂ O2(R) be the group generated by

reflections in the sides of T . Because of the rational angles, the group G is finite;

let N = |G|. If the interior angles of T are expressed as miπ/ni, where the integers

mi and ni have no common factors, then the number N is equal to twice the least

common multiple of the ni.

Take N copies of T , one for each reflected image gT with g ∈ G. Glue edges of

distinct copies according to the reflection rules: if h ∈ G is represented by reflection

across an edge e of gT , then e is glued to its image in hgT . The genus of the resulting

surface XT is given by the formula

(3.1) g(XT ) = 1 +
N

4

(
k − 2−

k∑
i=1

1

ni

)

where k is the number of vertices of T ; see [MT].

It is easy to see that the unit square unfolds into a torus, as does an equilateral

triangle. For the regular pentagon depicted in Figure 1.1, the reflection group has

10 elements, and the table unfolds into a surface of genus 6. On the other hand, the

(2π/5, 3π/10, 3π/10) triangle shown in Figure 1.2 tiles the regular pentagon, but it

unfolds into a surface of genus 4.

The Euclidean coordinates on the polygon T induce a flat conformal structure

on the resulting surface, together with a finite collection of cone-point singularities

(where the total angle at a point exceeds 2π). This structure can be recorded by the

holomorphic 1-form dz on T , glued up to define a 1-form ωT on the unfolded surface
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XT . The cone points are simply the zeroes of ωT . The pair (XT , ωT ) defines the

translation surface associated to the table T .

In fact, every compact Riemann surface X equipped with a holomorphic 1-form can

be obtained by gluing polygons in this way, though the polygons will not generally

be reflections of a single polygonal shape T ; see the discussion in [Ma2].

3.2. Geodesic flow on a translation surface. The notions of trajectories and

optimal dynamics can be defined on general translation surfaces (X, ω). Indeed, the

1-form ω gives a natural way to choose local Euclidean coordinates on X away from

the zeroes of ω. Namely, for any point z0 ∈ X with ωz0 6= 0, we can integrate ω to

define a coordinate chart near z0 by

ϕ(z) =

∫ z

z0

ω

which is locally invertible and locally independent of path. In fact, the transition

functions for these coordinate charts are given by translations, which explains the

term “translation” surface. The Euclidean charts induce a flat metric on the surface,

away from the zeroes of ω, and the geodesics in this metric are simply the straight

lines in these coordinates. The charts glue up at the zeroes of ω to form the cone-like

singularities.

When a surface comes from unfolding a billiard table, the straight lines are pre-

cisely the unfolded billiard trajectories. Thus, we can discuss the geodesics on a

general translation surface to make conclusions about billiard trajectories. We say a

translation surface (X, ω) has optimal flow dynamics if its geodesics in each direction

satisfy the dichotomy of §2.2. We say the surface satisfies the topological dichotomy

if its geodesics in each direction satisfy the dichotomy of §2.4.

3.3. Most geodesics are uniformly distributed. The idea of unfolding seems to

have first appeared in [KZ], where the authors studied topological transitivity of the

geodesic flow on the associated translation surface, concluding that most directions

on a table are minimal (all orbits are dense). General results about differentials on

closed surfaces imply that the periodic directions (where all geodesics are either closed

or travel between zeroes of ω) are dense in the circle; see [MT]. On the other hand,

almost every direction gives rise to uniformly distributed geodesics [KMS]. Back on

the table T , we get uniform distribution of the billiard trajectories in those directions.

4. Stretching the billiard tables

In this section, we describe the stretching deformation of billiard tables and trans-

lation surfaces, and we define the Veech group associated to a table. We conclude the

section with McMullen’s classification of dynamically optimal billiard tables which

unfold into surfaces of genus 2.
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Figure 4.1. The square table with its reflected copies, and their im-

ages under shearing.

4.1. An action of SL2R. The group SL2R consists of 2×2 matrices with real entries

and determinant 1. These linear transformations act on the set of polygons in the

plane: for a polygon P ⊂ R2, the matrix A ∈ SL2R sends P to the new polygon

A(P ). This action induces a deformation of billiard tables and associated translation

surfaces: let a matrix A act on each of the reflected copies of T , and glue the stretched

polygons according to the same rules. The result is a family of translation surfaces

(XA
T , ωA

T ) parametrized by A ∈ SL2R. See Figure 4.1.

A stretched surface (XA
T , ωA

T ) is conformally isomorphic to (XT , ωT ) if there exists

a biholomorphic map c : XA
T → XT which pulls ωT back to ωA

T . This can be seen in

terms of the polygons: the surfaces are isomorphic if the N polygons making up A ·T
can be cut into smaller polygons and reglued (without violating the reflection rules)

to obtain (X, ω). If so, we say that A lies in the Veech group ΓT . As an example, the

Veech group of the square table is the lattice SL2Z consisting of all 2 × 2 matrices

with integer entries and determinant 1.

This stretching action on billiard tables extends to an action of SL2R on all of

Ω1Mg, the moduli space of translation surfaces, and the Veech group Γ(X, ω) is the

stabilizer of (X, ω). The action is again defined by the linear stretching of polygons:

as mentioned before, any translation surface can be represented by a finite collection

of polygons in the plane, with parallel sides glued by a translation, equipped with

the 1-form dz. The Veech group Γ(X, ω) is easily seen to be a discrete subgroup of

SL2R, but it is a lattice only in special cases; see [Ve], [MT]. The parametrization

of an orbit SL2R → Ω1Mg descends to a map H → Mg which is a local isometry

with respect to the Poincaré metric on the upper half-plane H and the Teichmüller

metric on Mg; see e.g. [KMS], [Ve], [Mc1]. Translation surfaces with lattice Veech

group then correspond to the so-called Teichmüller curves, isometrically embedded

algebraic curves in Mg.

4.2. Genus 1. There is a unique holomorphic 1-form (up to scaling) on a torus,

coming from the form dz on C, when representing the torus as the quotient of C by

a lattice. The translation structure from dz is just the usual flat metric from the

plane with no singularities. It is well-known that geodesics on a flat torus satisfy
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c
c =

(
a +

√
a2 + 4b

)
/2

1

b

c

Figure 4.2. The L-shaped table L(a, b).

the optimal dichotomy described in §2.2. Thus any billiard table which unfolds into

a genus 1 translation surface must have optimal dynamics. In fact, using the genus

formula (3.1), we see that there are only 4 such tables: the three triangles with angles

(π/3, π/3, π/3), (π/2, π/4, π/4), (π/2, π/3, π/6), and the square.

4.3. Genus 2. The story in genus 2 is significantly more complicated, and a complete

discussion of billiard tables has involved a sophisticated understanding of the SL2R
action on Ω1M2. McMullen found that translation surfaces in genus 2 for which

Γ(X, ω) is not a lattice have geodesics as in Figure 2.2, showing:

Theorem 4.1. [Mc2] If (X, ω) is a translation surface of genus 2 and Γ(X, ω) is not

a lattice, then there exists a geodesic which is neither dense nor closed.

For a different proof when ω has a double zero, see [Ca]. Consequently, we have:

Corollary 4.2. If X has genus 2, then the following are equivalent:

(1) the translation surface (X, ω) is dynamically optimal;

(2) the translation surface (X, ω) satisfies the topological dichotomy; and

(3) the Veech group Γ(X, ω) is a lattice in SL2R.

McMullen went on to describe all Teichmüller curves and all dynamically optimal

billiard tables in genus 2. To clarify the following statement, we need a few definitions.

For any pair of integers a and b with b > 0, the billiard table L(a, b) is shown in Figure

4.2. Two tables are equivalent if their unfolded surfaces lie in the same SL2R orbit.

Theorem 4.3. [Mc3] Let T be a table which unfolds into a surface (XT , ωT ) of genus

2. Then T is dynamically optimal if and only if it is equivalent to

(1) a table tiled by congruent triangles of angles (π/2, π/3, π/6) or (π/2, π/4, π/4);

(2) an L-shaped table L(a, b) for some a, b ∈ Z; or

(3) the triangle (π/2, 2π/5, π/10).

In fact, McMullen gave a complete description of the orbit-closures and invariant

measures for the SL2R action on the moduli space Ω1M2 [Mc4].
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5. The covering construction

In this final section, we discuss the basic idea which leads to Theorems 1.2 and

1.3. When a translation surface (Y, η) is a covering of another translation surface

(X, ω), so that there is a covering map p : Y → X such that η = p∗ω, then the

Veech groups are commensurable [GJ]; that is, after conjugating in SL2R, the two

groups share a finite-index subgroup. Gutkin and Judge used this relation of the

Veech groups to characterize the translation surfaces (and billiard tables) with Veech

groups commensurable to SL2Z. When two translation surfaces are related only

by a branched covering, any holomorphic map of finite degree Y → X (so it may

have critical points) which pulls ω back to η, then the Veech group structure is not

necessarily preserved.

5.1. The branched covers of Hubert-Schmidt. Hubert and Schmidt considered

branched covers of lattice surfaces (X,ω) branched over points of a special type. A

point p in X is periodic if its orbit under the Veech group Γ(X, ω) is finite in X. (Note

that the Veech group can be viewed as the group of diffeomorphisms from (X, ω) to

itself which are linear with respect to the local Euclidean structure.) A point p is a

connection point if any geodesic from a zero of ω through the point p again encounters

a zero of ω. Hubert and Schmidt showed [HS]:

(1) If p is a non-periodic connection point on a lattice surface (X, ω), then the

subgroup Γ(X,ω, p) := {γ ∈ Γ(X, ω) : γ(p) = p} is infinitely generated; and

(2) If a branched cover (Y, η) → (X, ω) over a lattice surface (X, ω) is branched

only over a connection point p, then Γ(Y, η) is commensurable with Γ(X, ω, p),

and the surface (Y, η) satisfies the topological dichotomy.

They show further that the second statement holds when branching over more than

one connection point if the base surface (X, ω) has a property they call strong holo-

nomy type.

5.2. Examples of Smillie-Weiss and Cheung-Hubert-Masur. Smillie and Weiss

made use of the Hubert-Schmidt construction to prove Theorem 1.2, concentrating

on branched covers with a single ramification point in the base translation space of

genus g ≥ 2. They cleverly combine two facts: one is the simple observation that

the forgetful map from Mg,1 down to Mg has compact fibers. The second is Ma-

sur’s theorem that a minimal non-uniquely ergodic direction gives rise to a particular

SL2R-deformation which tends to infinity in Ω1Mg [Ma1].

In [CHM], the authors again use one of the Hubert-Schmidt branched covers, but

branched over two points. The special example of Theorem 1.3 arises in the following

way. Begin with the translation surface of the triangle with angles (π/2, π/5, 3π/10).

This triangle unfolds into two reflected copies of the regular pentagon, forming a

surface of genus 2. It is dynamically optimal [Ve], and it is equivalent to one of the

L-shaped tables in McMullen’s classification Theorem 4.3 [Mc1, §9]. The centers of
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lattice 
surfaces
or tables

topological
dichotomy

optimal
dynamics

Figure 5.1. A diagram of inclusions for billiard tables or translation surfaces.

the two pentagons are connection points (see definition in §5.1). Taking a double

cover of this genus 2 surface, branched over the two centers, produces the translation

surface of genus 4 which is the unfolding of the triangle (2π/5, 3π/10, 3π/10). The

new surface satisfies the topological dichotomy by the arguments of [HS], but Cheung,

Hubert, and Masur show that it has non-uniformly distributed, dense geodesics.

5.3. Lattice tables and a dynamical characterization. The schematic of Figure

5.1 indicates the relative inclusions of tables which have lattice Veech group, those

which are dynamically optimal, and those satisfying topological dichotomy. By Mc-

Mullen’s theorem (Corollary 4.2), the sets coincide for translation surfaces of genus

2. The examples of [SW] and [CHM] show that the containments are strict in the

setting of translation surfaces of arbitrary genus. Billiard tables have not yet been

found which are dynamically optimal without lattice Veech group, but a search is un-

der way. Further investigations are also in progress about possible characterizations

of the lattice condition, because it is the geometry of the SL2R action on the moduli

space of translation surfaces which drives most of the interest in this class of billiards.
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History of the Kervaire Invariant Problem

It always an important event when a famous old mathematical problem is solved.
But with the solution, the history of the problem—why people thought it was so
important in the first place, what were the twists and turns on the path to its
solution—is often not recorded.

Both technical and expository treatments of the solution to the “Kervaire Invari-
ant One” problem are being prepared, and will appear in time. I hope they’ll repeat
some of the rich history of the problem. But in this issue of the Current Events
Bulletin book we’ve chosen to focus on that history: at Mike Hopkins suggestion,
I solicited reports from some of the major player in homotopy theory about the
history of the problem and the mathematical thoughts and ideas that were related
to it and gave it such importance in the history of the field. William Browder and
Mark Mahowald—now joined by Paul Goerss—graciously agreed to provide some-
thing. You have before you, therefore, reports from great masters who struggled
with this problem, and created an immense amount of beautiful mathematics in
the process—without, however, reaching the eventual solution. We’ll hear about
the solution from Mike Hopkins in person. . .

David Eisenbud





HISTORY OF THE KERVAIRE INVARIANT PROBLEM

WILLIAM BROWDER

The history of this invariant could very well be considered to start with the
paper of Pontryagin in 1938, where he introduced Framed Bordism (as it is now
known) as a tool to calculate homotopy groups of spheres, using smooth manifolds.
He proved that the second stable homotopy group of the n-sphere was zero, but
this was soon shown to be incorrect by algebraic methods. The problem was the
absence of the Kervaire invariant.

For oriented closed manifolds of dimension 4k the middle dimensional intersec-
tion pairing defines a nonsingular symmetric bilinear form over the integers, whose
signature gives a famous algebraic invariant often called the index of the manifold.
For dimensions 4k+2 the intersection bilinear form is skew symmetric, and thus can
be put in canonical form, so no apparent such invariants exist. But if, in the mod
2 version, we can enrich the intersection form to be associated to a quadratic form,
that quadratic form has an invariant, called the Arf invariant after its discoverer.

I like to call this invariant the democratic invariant as it can be defined as follows:

Let V be a vector space of finite dimension over the integers mod 2, and let
q : V −→ Z/2 be a quadratic form with associated bilinear form f (i.e., q(a+ b) =
q(a) + q(b) + f(a, b)). Consider q to be a vote between 0 and 1 (the candidates)
among the elements of V (voters) and the Arf invariant of q is defined to be the
winner of the election. If the bilinear form f is nonsingular the election is decisive.
However, in the general case the election is a tie if and only if there is some element
r of V such that f(r, x) = 0 for all x in V , but q(r) = 1. (The election reaches a
clear result unless some radical element votes positively).

Pontryagin had failed to note that an underlying obstruction to the process he
was carrying out in dimension 2 was quadratic rather than linear, so that its Arf
invariant was an obstruction for his argument, but he corrected this mistake in a
later paper in 1955.

This might be considered the prehistory of the topological invariant, and in
my view the history properly begins with the paper of Kervaire in 1960 where he
constructed a PL 10-manifold which was not of the homotopy type of a smooth
manifold. In it he constructed a cohomology operation from dimension 5 to 10,
for a 4-connected closed 10-manifold which could be framed (stable tangent bundle
trivial) on the complement of a point, and this operation was quadratic. In his
example the Arf invariant was non trivial, while for any smooth manifold of that
type, he proved it would be trivial because of the vanishing of some homotopy.

Kervaire’s operation is defined in analogous circumstances for all dimensions and
in the famous 1962 paper of Kervaire and Milnor defined the middle dimensional
surgery obstruction in dimensions of the form 4k + 2. It followed from the surgery
theory developed there that this defined a Framed Bordism invariant. You could

1
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do surgery on the framed manifold to make it 2k-connected to define the invariant
and do surgery on a framed bordism to make the bordism similarly connected to
prove it well defined.

If a PL manifold M has a trivial tangent bundle (or more properly microbundle)
over the complement of a point it is in fact smoothable away from that point, from
the theory of smoothing of PL manifolds of Mazur and Hirsch-Mazur. If M is of
dimension 2n and (n−1)-connected, then its nth homology has a basis of embedded
spheres, and the normal bundle of each of these spheres is stably trivial. When n =
1, 3 or 7 it is trivial, but in other dimensions there are nontrivial possibilities, and
if n is odd there is a single nontrivial possibility, namely the tangent bundle to the
n-sphere. The quadratic form in these cases is simply given by whether this normal
bundle is trivial or not. (For n = 1, 3 or 7, the definition of a quadratic form is
related to the framing and is not homotopy invariant). The cohomology operation
of Kervaire detects this non-triviality, and its model is actually the Thom complex
of this tangent bundle.

If the Arf invariant of this form is zero, one can find enough embedded products
Sn × Rn representing a basis of the middle cohomology to carry out surgery to
make M into a homotopy sphere, and otherwise you cannot.

Thus the question of whether or not a framed manifold could have a nonzero
Kervaire invariant then became a central question for differential topology, equiva-
lent to the calculation of the subgroup of homotopy spheres which bounded framed
manifolds in dimension 4k + 1. The answer was yes for dimensions 2, 6 and 14 be-
cause of the parallelizability of the spheres of dimensions 1, 3 and 7, but remained
open for other dimensions of the form 4k + 2.

E. H. Brown in 1965 showed that for dimension 8k + 2 Spin manifolds, the co-
homology operation could be defined on the middle dimension without assuming
4k-connectivity, so that the Kervaire Invariant could be made a Spin bordism in-
variant, using surgery only to make the manifold simply connected. Subsequently,
he and F. P. Peterson in 1966 used this to show the Kervaire Invariant vanished on
Framed Bordism in dimension 8k + 2.

Then in 1968, I proved that the Kervaire Invariant vanished on Framed Bordism
in dimensions different from 2n − 2, and related possible nonvanishing in those
dimensions to the existence of elements in the homotopy of spheres related to certain
elements in the Adams spectral sequence. It turned out that this element had
already been constructed by Mahowald and Tangora in dimension 30 and such an
element was later constructed in dimension 62 by Barratt, Jones and Mahowald.

My method was to define the quadratic form by means of a functional Steenrod
operation on a subgroup of the middle cohomology mod 2 which allowed me to define
the form on a manifold M which had been “oriented” in a theory in which the 2k+2
Wu class was zero, a condition satisfied by any 4k+2 manifold. (The Wu classes are
defined using the Steenrod operations in M and are directly related to the Stiefel-
Whitney classes). A subtlety was that everything depended on how you made this
Wu class vanish, how you chose the “orientation”. This definition allowed one to
define the Kervaire invariant immediately on the framed (or otherwise “oriented”)
manifold without doing any surgery or other geometrical operation, and so gave
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a definition in a purely homotopy theoretical context of spaces satisfying Poincaré
duality.

For a smooth manifold M , my definition can be translated into a condition on
extending vector fields on submanifolds of M representing the middle dimensional
mod 2 cohomology.

A simpler proof of my theorem on Framed Bordism was given by Jones and Rees,
and Jones gave a beautiful construction of the 30 dimensional manifold representing
the Mahowald-Tangora homotopy element.

After the results in dimensions 30 and 62, attention turned to dimension 126, the
first open case, but this has resisted concerted attempts by many strong homotopy
theorists and still is unknown. Many had tried to prove that all of these possible
elements (or manifolds) existed but, conscious of the Hopf invariant 1 results (only
three possible dimensions 1, 3 and 7), some began to try to prove that they did not
exist beyond some dimension. Now this has been carried out by Hill, Hopkins and
Ravenel for dimensions greater than 126.

Much other work has been done on the Kervaire Invariant because of its im-
portance in surgery theory, e.g., Sullivan (product formula), Ranicki (algebraic
surgery), and others.
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Abstract

In this note we discuss how the first author came upon the Kervaire
invariant question while analyzing the image of the J-homomorphism in
the EHP sequence.

One of the central projects of algebraic topology is to calculate the homotopy
classes of maps between two finite CW complexes. Even in the case of spheres –
the smallest non-trivial CW complexes – this project has a long and rich history.

Let Sn denote the n-sphere. If k < n, then all continuous maps Sk → Sn are
null-homotopic, and if k = n, the homotopy class of a map Sn → Sn is detected
by its degree. Even these basic facts require relatively deep results: if k = n = 1,
we need covering space theory, and if n > 1, we need the Hurewicz theorem,
which says that the first non-trivial homotopy group of a simply-connected space
is isomorphic to the first non-vanishing homology group of positive degree. The
classical proof of the Hurewicz theorem as found in, for example, [28] is quite
delicate; more conceptual proofs use the Serre spectral sequence.

Let us write πiSn for the ith homotopy group of the n-sphere; we may also
write πk+nSn to emphasize that the complexity of the problem grows with k.
Thus we have πn+kS

n = 0 if k < 0 and πnSn ∼= Z. Given the Hurewicz theorem
and knowledge of the homology of Eilenberg-MacLane spaces it is relatively
simple to compute that

πn+1S
n ∼=

 0, n = 1;
Z, n = 2;
Z/2Z, n ≥ 3.

The generator of π3S
2 is the Hopf map; the generator in πn+1S

n, n > 2 is the
suspension of the Hopf map. If X has a basepoint y, the suspension ΣX is given
by

ΣX = S1 ×X/(S1 × y ∪ 1×X)

where 1 ∈ S1 ⊆ C. Then ΣSn ∼= Sn+1 and we get a suspension homomorphism

E : πn+kS
n → π(n+1)+kS

n+1.

∗The second author was partially supported by the National Science Foundation.
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By the Freudenthal Suspension Theorem, this map is onto if k ≤ n − 1, and if
k < n − 1 it is an isomorphism. The common value of this group for large n
is the kth stable homotopy group of spheres, written πskS

0. For short, we may
write

colimkπn+kS
n = πskS

0.

Note that this formula makes sense even if k < 0.
There has been a great deal of computation in the stable homotopy groups

of spheres; see, for example, Appendix 3 of [26]. The answer is fairly complete
for k up to about 60; if we divide out by 2- and 3-torsion, this can be improved
to about k = 1000. However, we are a long way from any sort of complete
calculation. Research since the mid-1970s has shifted to the investigation of
large-scale phenomena, especially after the paper by Miller, Ravenel, and Wilson
[24] on periodic phenomena and the proofs of Ravenel’s nilpotence conjectures
by Devinatz, Hopkins, and Smith [10, 13].

Historically, the Kervaire invariant arose in Pontryagin’s calculation of πs2S
0.

He noted that πskS
0 is isomorphic to the group of cobordism classes of framed

k-manifolds; that is, differentiable manifolds with a chosen trivialization of the
stable normal bundle. Let F2 be the field with two elements. and let M be a
connected framed manifold of dimension k = 4m− 2. By collapsing all but the
top cell of M we obtain a map

M −→ S4m−2

which is an isomorphism of H4m−2(−,F2). Using surgery [6, 29] we can try to
to build a cobordism from M to the sphere. This may not be possible, but we
do find that the non-singular pairing

λ : H2m−1(M,F2)×H2m−1(M,F2)→ H4m−2(M,F2) ∼= F2

given by Poincaré duality has a quadratic refinement µ; that is, there is a
function µ : H2m−1(M,F2)→ F2 so that

µ(x+ y) + µ(x) + µ(y) = λ(x, y).

Up to isomorphism, the pair (H2m−1(M,F2), µ) is completely determined by the
Arf Invariant. This invariant is 1 if µ(x) = 1 for the majority of the elements
in H2m−1(M,F2); otherwise it is 0.1 The Kervaire invariant of M is the Arf
invariant of this quadratic refinement.

After first getting the computation wrong, Pontryagin [25] noted that for
a particular framing of S1 × S1, the Kervaire invariant was non-zero, giving a
non-trivial cobordism class. Then πs2S

0 ∼= Z/2Z generated by this element.
To study the higher homotopy groups of spheres, we must consider more

sophisticated methods. One such is the Adams spectral sequence

ExtsA(F2,ΣtF2) =⇒ πst−sS
0 ⊗ Z2.

1For this reason, Browder has called the Arf invariant the “democratic invariant”.
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Here A is the Steenrod algebra, Z2 is the 2-adic integers, and ΣtF2 = H̃∗(St,F2).
The Kervaire invariant elements are then classes

h2
j ∈ Ext2A(F2,Σ2j+1

F2)

which could detect elements in πs2j+1−2S
0. If j = 1, this element detects Pon-

tryagin’s class.
In his work in smoothing theory, Kervaire [16] constructed a topological

manifold of dimension 4m−2 for m 6= 1, 2, 4 which had Kervaire invariant one
and which was smooth if a point was removed. The question then became “Is
the boundary sphere smoothable?” Browder [5], proved that it was smoothable
if and only if m = 2j−1, j ≥ 4 and if the elements h2

j detected a homotopy class.
The homotopy class was constructed for j = 4 before Browder’s work by Peter
May in his thesis [22]; the finer properties of this element were uncovered in [4].
The class in dimension 62 (that is, j = 5) was constructed later in [3].

Hill, Hopkins, and Ravenel [11] have shown that for j ≥ 7 the class h2
j is not

a permanent cycle in the Adams spectral sequence and cannot detect a stable
homotopy class. This settles Browder’s question in all but one case. Their proof
is a precise and elegant application of equivariant stable homotopy theory. It
is also very economical: they develop the minimum amount needed to settle
exactly the question at hand. The very economy of this solution leaves behind
numerous questions for students of πs∗S

0. One immediate problem is to find
the differential on h2

j in the Adams spectral sequence. The target would be an
important element which we as yet have no name for.

The Kervaire invariant and Arf invariant have appeared in other places and
guises in geometry and topology. For example, it is possible to formulate the
Kervaire invariant question not for framed manifolds, but for oriented manifolds
whose structure group reduces to SO(1) = S1. In this formulation, Ralph
Cohen, John Jones, and the first author showed that the problem had a positive
solution [8]. The relevant homotopy classes are in the stable homotopy of the
Thom spectrum MSO(1); they are constructed using a variant of the methods of
[19], which certainly don’t extend to the sphere. Note that MSO(1) = Σ−2CP∞

is an infinite CW spectrum, but still relatively small. This may the best of all
positive worlds for this problem.

In [7], Brown found a way to extend the Kervaire invariant to another more
general class of manifolds. And, by contemplating work of Witten, Hopkins
and Singer found an application of the Arf invariant in dimension 6 to some
problems in mathematical physics. See [12].

Parallel to this geometric story, the Kervaire invariant problem also arose in
an entirely different line of research in homotopy theory, and here the negative
solution of [11] leaves as many questions as it answers. This line of inquiry, long
studied by the first author, asks just how the stable homotopy groups of spheres
are born. To make this question precise, we must introduce the EHP sequence.
This was discovered by James [15] in the mid-1950s and related techniques were
exploited by Toda to great effect in his landmark book [27].

If X is a based space, let ΩX denote the space of based loops in X. In
his work on loop spaces [14], James produced a small CW complex with the
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homotopy type of ΩSn+1 and later he noticed that this gave a splitting

ΣΩSn+1 '
∨
t>0

Snt+1.

Here
∨

is the one-point union or wedge. By collapsing all factors of the wedge
except for t = 2 and then taking the adjoint, we obtain the first Hopf invariant

H : ΩSn+1 → ΩS2n+1

There is also the map E : Sn → ΩSn+1 adjoint to the identity; it induces the
suspension homomorphism on homotopy groups. A calculation with the Serre
spectral sequence shows that

Sn
E // ΩSn+1 H // ΩS2n+1

is a fiber sequence when localized at 2. As a consequence there is a long exact
sequence in homotopy groups, once we divide out by the odd torsion:

(1) · · · → πi+2S
2n+1 P // πiSn

E // πi+1S
n+1 H // πi+1S

2n+1 → · · · .

This is the EHP sequence. As mentioned, E is the suspension map and H is the
Hopf invariant. The map P is more difficult to describe; however we do have
that if α ∈ π∗Sn−1, then (up to sign)

P (En+2α) = [ιn, Eα]

where [−,−] is the Whitehead product and ιn ∈ πnSn is the identity. Thus, for
example, P (ι2n+1) = [ιn, ιn].

From this point forward in this note, we will implicitly localize all
groups at the prime 2.

The EHP sequence gives an inductive method for calculating the homotopy
groups of spheres; the key is to do double induction on n and k in πn+kS

n. To
this end we reindex the subscripts in Equation (1) and write a triangle

(2) πn+kS
n E // π(n+1)+kS

n+1

Hwwooooooooooo

π(2n+1)+(k−n)S
2n+1

P

ffL
L

L
L

L

for the EHP sequence. The dotted arrow indicates a map of degree −1. Then,
assuming we know πm+iS

m for all m ≤ n and for all i < k, we can try to
calculate π(n+1)+kS

n+1. Coupled with the unstable Adams Spectral Sequence,
it is possible to do low dimensional calculations very quickly – but, as with all
algebraic approximations to the homotopy groups of spheres, it gets difficult
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fairly soon.2 Tables for this computation can be found in a number of places;
see, for example, [23] or §I.5 of [26].

Question 1.1. Suppose α ∈ πskS0 is a stable element.

1. What is the smallest n so that α is in the image of πn+kS
n → πskS

0? Then
Sn is the sphere of origin.

2. Suppose Sn is the sphere of origin of α and a is a class in πn+kS
n which

suspends to α. What is H(a)? This is “the” Hopf invariant of α.

Technical Warning 1.2. As phrased, the second question is not precise, as
there maybe more than one a which suspends to α. There are several ways out
of this difficulty. One is to ignore it. In practice, this works well. Another is to
note that the EHP sequences, as in Equation (2) assemble into an exact couple
which gives a spectral sequence

E1
k,n = πn+kS

2n−1 =⇒ πskS
0.

Then questions (1) and (2) can be rephrased by asking for the non-zero element
in E∞ which detects α.

It is a feature of this spectral sequence that the E2-page is an F2-vector
space. This means, for example, that elements of high order must have high
sphere of origin. Charts for this spectral sequence can be developed from [17]
and can be found in explicit form in [23], which is based on work of the first
author.

Example 1.3. As a simple test case, the sphere of origin the generator η ∈
πs1S

0 ∼= Z/2Z is S2 and a can be taken to the Hopf map S3 → S2. The Hopf
invariant of this map is (up to sign) the identity ι3 ∈ π3S

3. We can ask when
ι2n−1 ∈ π2n−1S

2n−1 can be the Hopf invariant of some stable class. This is the
Hopf invariant one problem, settled by Adams in [1]: it only happens when n
is 2, 4, or 8; the resulting stable classes are η ∈ πs1S0, ν ∈ πs3S0, and σ ∈ πs7S0.

There are instructive reformulations of the Hopf invariant one problem.
First, by the EHP sequence, ι2n−1 is the Hopf invariant of a stable class if
and only if

[ιn−1, ιn−1] = 0 ∈ π2n−1S
n−1.

Thus we are asking about the behavior of the Whitehead product.
Second, an argument with Steenrod operations shows there is an element of

Hopf invariant one if and only if the element

hj ∈ Ext1A(F2,Σ2j

F2)

survives to E∞ in the Adams spectral sequence. It is this last question that
Adams settled showing

d2hj = h0h
2
j−1

2Doug Ravenel has dubbed this general observation “The Mahowald Uncertainty Princi-
ple”.
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if j ≥ 4.
This example, while now part of our basic tool kit, remains very instructive

for the interplay of stable and unstable information, and the role of the Adams
spectral sequence. Notice also that we changed our question in the middle of
the discussion.

Question 1.4. Let α ∈ πskS0 be a stable element, then α desuspends uniquely
to πn+kS

n if n > k + 1. Suppose 2n− 1 > k + 1. Is

α ∈ π2n−1+kS
2n−1

the Hopf invariant of a stable element in π2n−1+kS
n?

The solution of the Hopf invariant one problem, completely answers this
question for a generator of πs0S

0. We will have other examples below.
It is exactly in thinking about Question (1.4) that the first author came to

the Kervaire invariant problem.
In the middle 1960s, Adams [2] (with an addendum by the first author at the

prime 2 [18]) wrote down an infinite family of non-zero elements in the homotopy
groups of spheres. These elements we now call the image of J, and they were
the first example of “periodic” families. They are easy to define, although less
easy to show they are non-trivial.

Let SO(n) be the special orthogonal group. Then SO(n) acts on Sn by
regarding Sn as the one-point compactification of Rn. This action defines a
map

SO(n)→ map∗(S
n, Sn)

from SO(n) to the space of pointed maps. Taking the adjoint, assembling all n,
and applying homotopy yields map

(3) J : πkSO → πskS
0.

By Bott periodicity, we know the homotopy groups of SO. What Adams did
was compute the image. To state the result, let k > 0 be an integer, let ν2(−)
denote 2-adic valuation, and define

λ(k) = ν2(k + 1) + 1.

Thus λ(7) = 4 and λ(11) = 3. The image of the J-homomorphism lies in a split
summand Im(J)∗ ⊆ π2

∗S
0 with Im(J)1 ∼= Z/2Z generated by η and for k ≥ 2,

Im(J)k =


Z/2λ(k)Z k = 8t− 1, 8t+ 3;
Z/2Z k = 8t, 8t+ 2;
Z/2Z× Z/2Z k = 8t+ 1;
0 k = 8t+ 4, 8t+ 5, 8t+ 6.

Let’s write ρ8t−1 and ζ8t+3 for the generators of the groups in degrees 8t − 1
and 8t+3 respectively. Some of these elements are familiar; for example, ν = ζ3
and σ = ρ7. The elements ηρ8t−1 and η2ρ8t−1 are non-zero in Im(J)∗. There
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is another generator µ8t+1 in degree 8t + 1; ηµ8t+1 6= 0 and η2µ8t+1 = 4ζ8t+3.
Despite the name, the J-homomorphism of Equation (3) is not onto Im(J)∗, as
the elements µ8t and ηµ8t are not in the image, although we see that they are
intimately connected to that image. In fact, we can think of µ1 as η; then

η2µ1 = η3 = 4ν = ζ3

and the equation η2µ8t+1 = 4ζ8t+3 is then forced by the periodic behavior of
these elements.

There were several revealing new features to this family. One was that it
was infinite: this was the first systematic collection of elements produced in the
stable homotopy groups of spheres and took us beyond the era of stem-by-stem
calculations. Another feature was that this was the first of what we now call
periodic families of stable homotopy classes. The attempt to understand stable
homotopy theory in terms of periodic families led to a reorganization of the
field, including the work of Miller, Ravenel, and Wilson [24], and the Ravenel’s
nilpotence conjectures, proved by Devinatz, Hopkins, and Smith [10, 13].

We now say that Im(J)∗ is the v1-periodic homotopy groups of spheres. We
won’t dwell on this point, but in modern language (a language not available in
the 1960s), we say the the composite

Im(J)∗
⊆ // πs∗S

0 // π∗LK(1)S
0

is an isomorphism in degrees greater than 1 and an injection in degree 1. Here
LK(1)S

0 is the localization of the sphere spectrum at the K-theory with coeffi-
cients in Z/2Z.

In the mid-1960s, the first author began an extensive study of the image of
J in the EHP sequence; the first results appeared in [17] and there was followup
paper [20] almost fifteen years later.

The sphere of origin and the Hopf invariants of the elements in the image of
J are all known. For example, the sphere of origin of ζ8k+3 is S5 and its Hopf
invariant is an element on S9 which suspends to 2λ(8k−1)−1ρ8k−1; in particular,
the Hopf invariant of ζ8k+3 is another element in the image of J . The remarkable
fact is that this is (almost) true in general; the exception is ηρ8k−1 which has
sphere of origin S3 and Hopf invariant νζ8k−5 on the 5-sphere.3 In this sense
the image J is very nearly a closed family. The detailed answers are nicely laid
out in [23].

But there are exceptions. Once the the sphere-of-origin and Hopf invariant
calculations have been answered for the elements in the image of J , there are
still a few elements left that could be Hopf invariants of new elements in the
stable homotopy groups of spheres. There are some sporadic examples (see the
table below) and there are also two infinite families. The first is

ν = ζ3 ∈ π2j+1−2S
2j+1−5, j ≥ 4.

3Since ν = ζ3, the element νζ8k−5 could be regarded as an honorary element of the image
of J , failing to attain full membership because it is unstable.
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This turns out to be the Hopf invariant of an element

ηj ∈ πs2jS0

detected by the element

h1hj ∈ Ext2A(F2,Σ2j+2F2).

This element was constructed by the first author in [19].
The Kervaire invariant elements arose as part of conjectural solution to what

happens for the second infinite family. To describe this conjecture we need some
notation.

Let j ≥ 2 and define integers a and b by the equation j = 4a + b for
0 ≤ b ≤ 3. Define φ(j) = 8a + 2b. Notice that if i ≥ 2, then πiSO 6= 0 if and
only if i = φ(j)−1 for some j. Let βj be a generator of the image of J in degree
φ(j)− 1; thus, for example, we have

β2 = ν β3 = σ β4 = ησ β5 = η2σ β6 = ζ11.

Notice we are excluding the generators µ8k+1 and ηµ8k+1.
The remaining classes available to be Hopf invariants were the infinite family

βj ∈ π2n+φ(j)S
2n+1, n+ φ(j) + 1 = 2j+1.

The first author made the following conjecture in 1967 [17].

Conjecture 1.5. Let n+φ(j) + 1 = 2j+1. The Whitehead product [ιn, βj ] = 0
if and only if h2

j detects a non-zero homotopy class.

To paraphrase the conjecture we have: if h2
j detects a non-zero homotopy

class Θj , then Θj has sphere of origin S2j+1−φ(j) and Hopf invariant βj .
This conjecture has been proved in all aspects by Crabb and Knapp [9], but,

of course, the negative solution of [11] leaves only the case j = 6 of interest.
Indeed, we now see that for j > 6

[ιn, βj ] 6= 0 ∈ π∗S2j+1−φ(j)−1.

So, somewhat surprisingly, the image of J has led us into unknown territory.
What else can we say about this class?

Open Problem 1.6. There is another, richer, question left as well. If the
Kervaire invariant class Θj had existed, it would have had Hopf invariant βj . A
likely consequence of this was that for all odd k, the element

P (βj) ∈ π∗Sk2
j+1−φ(j)−1

would have had Θj as its Hopf invariant. Now we have no idea what the Hopf
invariant of this family of elements could be, but they are presumably a new and
very interesting collection of elements in the stable homotopy groups of spheres.
For example, they should play a key role in the iterated root invariant [21] of
2ι ∈ πs0S0. The elements in this family should depend only on m, and not on k.
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Here is a table showing the generators in the stable homotopy groups of
spheres which are not in the image of J , yet which have Hopf invariants in the
image of J . Listed also are their spheres of origin, and their Hopf invariants.
There are five (or six) sporadic elements and one infinite family. The element
Θ6 is the unsettled case of the Kervaire invariant problem. It may or may not
exist. The element ν∗ is the Toda bracket 〈σ, 2σ, ν〉 in πs18S

0. It is detected by
h2h4 in the Adams Spectral Sequence. In this context the ηj family looks quite
curious. Why does it have this privileged role?

Element Sphere of Origin Hopf Invariant

ν2 4 ν
σ2 8 σ
ν∗ 12 σ
Θ4 23 ησ = β4

Θ5 54 η2σ = β5

Θ6(?) 116 ζ11 = β6

ηj 2j − 2 ν
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